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Abstract. In this review, thermal effects in semiconductor devices and electric circuits are
modeled and numerically simulated. The device heating is due to the particle temperatures,
recombination effects, and the thermal power from the companion thermal network. The com-
plete model consists of the energy-transport equations for the charge carriers and the particle
temperatures in the semiconductor device, together with a heat equation for the lattice temper-
ature; the electric network equations; and the thermal network describing the heat evolution in
the circuit elements. The derivation of the energy-transport equations from the semiconductor
Boltzmann equation is sketched, and the submodels and their couplings are introduced. The
heating effects are illustrated by several numerical examples.
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1 Introduction
Self-heating is becoming of paramount importance in modern ultra-integrated circuits and power devices
since it influences strongly the circuit behavior or even lowers its performance. The standard approach for
the modeling of integrated circuits is to replace the semiconductor devices by equivalent circuits consist-
ing of basic elements and including (thermal) fitting parameters. Due to the decreasing feature size and
increasing operating frequency, however, a very large number of basic elements and a careful adjustment
of the large number of fitting parameters is needed in order to achieve the required accuracy. Therefore,
it is preferable to model thermally relevant semiconductor devices by transport equations and to develop a
coupled model for the particle temperatures, the lattice temperature in the device, and the temperatures of
the circuit elements. The goal of this paper is to review the derivation of the energy-transport equations and
the modeling of electric circuits and thermal networks and to present some numerical examples illustrating
the self-heating behavior.

Thermal effects in microelectronic modeling were already considered in the 1970s [1, 26]. First coupled
circuit-device models were often based on a combination of device and circuit simulators [23]. More re-
cently, electric network models were coupled to semiconductor transport equations, using drift-diffusion
[43, 47] or energy-transport models [3, 13]. A thermodynamic approach to extend the drift-diffusion equa-
tions to the nonisothermal case was presented in [49], later generalized in [2] using first principles of en-
tropy maximization and partial local equilibrium. Recently, an energy-transport model coupled to electric
circuit equations and a lattice heat equation was numerically simulated in [14].

Self-heating is described by the following models. First, the energy-transport equations allow for the
computation of the particle temperatures. Collisions of the charge carriers with the crystal lattice (modeled
by a relaxation-time ansatz) leads to an increasing lattice temperature which is described by a heat equation
derived from thermodynamic principles. Second, the circuit is modeled by electric network equations
resulting from the so-called modified nodal analysis. Third, a thermal network model describes the heat
evolution in the (lumped and distributed) circuit elements. These three subsystems are coupled by thermo-
electric, electric circuit-device, and thermal network-device interfaces. Figure 1 presents an overview of
the subsystems.

In Section 2 we introduce the energy-transport equations for the electrons. First their derivation from the
semiconductor Boltzmann equation is sketched. The equations are numerically approximated by using
mixed finite-element methods, and numerical simulations of two- and three-dimensional devices are pre-
sented. The equation for the lattice temperature is derived in Section 3. Section 4 is concerned with the
modeling of the electric circuit employing the Kirchhoff laws and current-voltage characteristics of the
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Figure 1: Overview of the coupled thermo-electric circuit-device model.

basic elements. Thermally relevant circuit elements are described in a thermal network model detailed in
Section 5. Finally, the fully coupled model is considered in Section 6.

2 Energy-transport modeling
Heating of electrons in the semiconductor crystal is described by the energy-transport equations. In this
section, we sketch its derivation from the semiconductor Boltzmann equation, approximate the equations
numerically, and present some numerical examples.

2.1 Derivation of the model

The semiconductor crystal is supposed to be a three-dimensional array of atoms arranged in a lattice. The
quantum states of the electrons in the periodic lattice are given by the eigenfunctions ψn(k), n ∈ N, of a
suitable Schrödinger equation, indexed by the so-called pseudo-wave vector k ∈B, where the subset B⊂R3

is the Brillouin zone (see [33, 35] for details). The corresponding eigenvalue E(k) = En(k) represents the
energy of the state k in the n-th band.

Instead of a full quantum description, we prefer a semi-classical model in which the electrons in the conduc-
tion band are modeled statistically and quantum effects enter only through the (conduction) band structure
E(k). Let f (x,k, t) be the distribution function of an electron ensemble, where x ∈ R3 denotes the spatial
variable and t > 0 the time. More precisely, f (x,k, t) is the ratio of the number of occupied quantum states
of the electrons in the infinitesimal volume element dxdk in the conduction band to the total number of
states in dxdk in the conduction band. The distribution function fα(x,k, t) is assumed to satisfy the scaled
semiconductor Boltzmann equation

α2∂t fα +α
(
v(k) ·∇x fα +∇xV ·∇k fα

)
= Q( fα), x ∈ R3, k ∈ B, t > 0,

where α > 0 is the (scaled) mean free path of the particles, v(k) = ∇kE(k) the electron group velocity,
V = V (x, t) the electric potential, and Q( f ) is the collision operator. The Boltzmann equation is comple-
mented with periodic boundary conditions for k ∈ B and initial conditions for f . The collision operator is
decomposed as the sum of elastic, electron-electron, and inelastic scattering terms according to

Q( f ) = Qel( f )+αQee( f )+α2Qin( f ).

We do not make precise the structure of the scattering terms since we need only some properties (and refer
to [33] for details): The kernel of the linear elastic collision operator Qel consists of functions which depend
only on the energy, f (x,k, t) = F(x,E(k), t). Furthermore, the kernel of the electron-electron collision
operator Qee consists of Fermi-Dirac distributions, f = (1 + exp((E(k)− μ)/Tn))−1, where the chemical
potential μ ∈ R and the electron temperature Tn > 0 are some parameters. Moreover, we assume that
scattering conserves mass and that elastic scattering additionally conserves energy:∫

B
Qγ( f )dk =

∫
B

Qel( f )Edk = 0 for all f , γ = el,ee, in.
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We suppose that the mean free path is “small”, α � 1, meaning that we consider a time scale much larger
than the typical time between two inelastic collisions. We refer to [33] for the precise scaling.

The main idea of the derivation of the macroscopic equations is to multiply the Boltzmann equation by
1 and E(k), to integrate the resulting equation over the wave-vector space, which leads to the so-called
moment equations

∂t

∫
B

fα dk′ +
1
α

divx

∫
B

fα vdk′ = 0, (1)

∂t

∫
B

fα Edk′ +
1
α

divx

∫
B

fα vEdk′ −
1
α

∇xV ·
∫

B
fα vdk′ =

1
α2

∫
B

Q( fα)Edk′, (2)

where dk′ = dk/4π3, and to perform the (formal) limit α → 0 appropriately.

The derivation consists of three steps, following [22]. In the first step, we let formally α → 0 in the
Boltzmann equation leading to Qel( f ) = 0, where f = limα→0 fα . Thus, f (x,k, t) = F(x,E(k), t) for some
function F . For the second step, we insert the Chapman-Enskog expansion fα = F + αgα (which defines
gα ) into the Boltzmann equation and let α → 0:

Qel(g) = v(k) ·∇xF +∇xV ·∇kF −Qee(F),

where g = limα→0 gα . It can be shown that this operator equation is formally solvable if and only if its
integral over the energy surface of energy ε vanishes [33], which, after some manipulations, can be written
as ∫

B
Qee(F)δ (E(k)− ε)dk = 0 for all ε.

The integral involving the delta distribution can be mathematically defined by using the coarea formula. By
assumption, F is a Fermi-Dirac distribution, F = Fμ,Tn = (1+exp((E(k)−μ)/Tn))−1 for some μ = μ(x, t)
and Tn = Tn(x, t).

The third step is concerned with the limit α → 0 in the moment equations (1)-(2). The integral of Fμ,Tn

over B vanishes since v = ∇kE and Fμ,Tn lies in the kernels of Qel and Qee. Thus, the α−1-terms in (1)-(2)
vanish and the moment equations become in the limit

∂t

∫
B

Fμ,Tndk′ +divx

∫
B

gvdk′ = 0,

∂t

∫
B

Fμ,Tn Edk′ +divx

∫
B

gvEdk′ −∇xV ·
∫

B
gvdk′ =

∫
B

Qin(Fμ,Tn)Edk′.

Introducing the electron and energy densities and the particle and energy current densities

n =
∫

B
Fμ,Tndk′, ne =

∫
B

Fμ,Tn Edk′, Jn = −

∫
B

gvdk′, Sn = −

∫
B

gvEdk′, (3)

respectively, the moment equations can be formulated as

∂tn−divxJn = 0, ∂t(ne)−divxSn +∇xV · Jn = W, (4)

where W =
∫

B Qin(F)Edk′. In order to derive expressions for the current densities which depend on the
macroscopic variables, we introduce the vector-valued solution d0 of Qel(d0) = −vF(1−F). Then, since
F = (1+exp((E(k)−μ)/Tn))−1 and since Qel is assumed to be linear, we can write g =−d0 ·(∇x(μ/Tn)−
∇xV/T −E∇x(1/Tn))+F1, and F1 lies in the kernel of Qel. This implies that

Jn = D00

(
∇x

μ
Tn

−
∇xV
Tn

)
−D01∇x

( 1
Tn

)
, Sn = D10

(
∇x

μ
Tn

−
∇xV
Tn

)
−D11∇x

( 1
Tn

)
, (5)

and the diffusion coefficients are given by

Di j = Di j(μ ,Tn) =
∫

B
Ei+ jv⊗d0dk, i, j = 0,1. (6)
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The functions (n,ne) and (μ ,Tn) are related by the first two equations in (3). Equations (4)-(6) are referred
to as the energy-transport equations. They are complemented by initial conditions for n and Tn and, in the
case of a bounded domain, by mixed Dirichlet-Neumann or Robin-Neumann boundary conditions for n,
Tn, and V (see [13]).

Another contribution to the current flow is due to defect electrons in the valence band, which are usually
described by pseudo-particles: holes. Physically, a hole is a vacant orbital in a valence band. Also for
these particles, an energy-transport model for the hole density p and the hole temperature Tp (with the
hole current density Jp and the hole energy flux Sp) can be derived. Often, the hole temperature can be
approximated by the lattice temperature, and the hole density evolves according to the drift-diffusion model

∂t p+divJp = −R(n, p), Jp = −∇(μp p)−μp p∇V, (7)

where μp is the hole mobility and R(n, p) describes recombination-generation processes between electrons
and holes.

The above transport equations are coupled to the Poisson equation for the electric potential:

λ 2ΔV = n− p−C(x), (8)

where λ is the (scaled) Debye length and C(x) the doping profile modeling fixed background charges in
the semiconductor crystal.

The first energy-transport model was presented by Stratton in 1962 [45]. Often, the energy-transport model
is considered as an approximation of the hydrodynamic equations [42]. There are only a few mathematical
results about the initial-value problem of the energy-transport equations, since they are strongly coupled.
The first existence result for a heuristic model was proved in [4]. Existence results for models with a
uniformly positive diffusion matrix were shown in [19, 20] and for data close to equilibrium in [18, 24, 28].

In nonequilibrium thermodynamics, the formulation (4)-(5) is well known. Indeed, the so-called thermo-
dynamic fluxes depend linearly on the thermodynamic forces X0 = ∇(μ/Tn)−∇V/Tn and X1 =−∇(1/Tn)
[29]. The variables μ/Tn and −1/Tn are known as the (primal) entropy variables. The connection to ther-
modynamics has an important consequence. By introducing the dual entropy variables w0 = (μ −V )/Tn
and w1 = −1/Tn, the current densities can be written in the “symmetric” form

Jn =
1

∑
i=0

L0i∇wi, Sn =
1

∑
i=0

L1i∇wi, (9)

where the new diffusion coefficients Li j depend on Di j and V , and the equation for the energy becomes
∂t(ne− nV )− divSn = W . Thus, the convective terms disappear which is very useful for the design of
numerical schemes.

The formulation (4)-(6) is not explicit in the macroscopic variables (n,ne) or (μ ,Tn). Explicit expressions
are obtained under simplifying assumptions. To this end, we approximate the Fermi-Dirac distribution by
the Maxwellian exp(−(E −μ)/Tn) and assume that the energy is given by the parabolic band approxima-
tion E(k) = |k|2/2, that the elastic scattering rate is proportional to Eβ with β = 1/2 (valid for nonpolar
phonon scattering; see [35]), and that the averaged inelastic collision integral is approximated by a Fokker-
Planck ansatz [21]. Then the energy-transport model consists of equations (4)-(5) with the relations

n =
2

(2π)3/2 T 3/2eμ/Tn , ne =
3
2

nTn,

the (scalar) diffusion coefficients

D00 = μ0n, D01 = D10 =
3
2

μ0nTn, D11 =
15
4

μ0nT 2
n ,

with the mobility constant μ0 > 0, and the relaxation-time term W = −(3/2)n(Tn −TL)/τ , where TL is the
lattice temperature and τ > 0 is the energy relaxation time appearing in the Fokker-Planck ansatz. The
current densities (5) can be written in the “drift-diffusion” form

Jn = μ0(∇n−nT−1
n ∇V ), Se =

3
2

μ0(∇(nTn)−n∇V ). (10)
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The drawback of this formulation, compared to the “symmetric” form (9), is that the equations are con-
vection dominated for large electric fields, which requires special numerical schemes. On the other hand,
the model is decoupled in the “drift-diffusion” formulation, i.e., there are no cross-diffusion terms like in
the formulation (5) or (9), which makes it easier to devise iteration schemes for the numerically discretized
system.

We remark that there are also other energy-transport models in the literature which are different in the
choice of the energy band and the definition of the scattering rate. For instance, the case β = 0 was
considered in [36]. If β = −1, the model corresponds to some simplified hydrodynamic equations [33].
Nonparabolic energy bands were assumed in [17, 21, 51].

2.2 Numerical approximation

The numerical discretization of (stationary) energy-transport models was investigated in the physical liter-
ature since the 1980s, see, e.g., [17, 25, 44]. Mathematicians started to consider these models in the 1990s,
using finite-difference methods [41], mixed finite-volume schemes [8], and mixed finite-element techniques
[21, 27, 31, 32, 34, 37] (see [10] for a review). The most important features of the mixed finite-element
method are the current conservation (the current is introduced as an independent variable and continuity is
directly imposed) and the ability to approximate accurately steep gradients. In the following, we describe
two approaches.

The approximation of [21, 31, 32] is based on the “drift-diffusion” formulation (10), which allows for the
use of well-understood discrete schemes developed originally for the drift-diffusion model. The stationary
equations are written in the form

−divJ +σg = f , J = ∇g−
∇V
Tn

g, (11)

where J is a current density, g the variable at hand, σg with σ ≥ 0 is a zeroth-order term originating from
the relaxation-time term in (4), and f is the right-hand side. In [31], the equation is discretized in two space
dimensions as follows.

First, the problem is written by means of a local Slotboom variable in a symmetric form, defining y =
exp(−V/T n)g in each element of the triangulation of the semiconductor domain, where T n is some piece-
wise constant function approximating the electron temperature Tn. Then, the current density becomes
J = exp(−V/T n)∇y in each element, which eliminates the drift term g∇V/Tn. This change of unknowns
is also called exponential fitting.

In the second step, the symmetric form is discretized with mixed finite elements. For the case σ = 0
and constant temperature, a mixed scheme, based on the lowest-order Raviart-Thomas elements [40], has
been introduced and discussed in [12] for f = 0 and in [11] for f 	= 0. The matrix associated with the
scheme can be proved to be an M-matrix if a weakly acute triangulation is used. This property guarantees a
discrete maximum principle and, in particular, a nonnegative solution if the boundary data are nonnegative.
Unfortunately, the M-matrix property does not hold anymore if σ 	= 0. In order to circumvent this fact we
use the finite elements developed and analyzed by Marini and Pietra [39]. It has been proved that these
elements provide an M-matrix for all σ ≥ 0.

In the third step, a suitable discrete change of unknowns is performed to return to the original variable g.
Finally, static condensation gives a nonlinear discrete system only in the (discrete version of the) variable
g. The nonlinear problem is solved by a variant of the Gummel iteration procedure. The main idea is to
solve the Poisson equation, in which n and p are replaced by the local V -dependent Slotboom variables, by
a Newton method, but to employ a fixed-point strategy for the remaining equations. It is well known that a
Gummel-type iteration scheme is very sensitive to the choice of initial guess, in particular far from thermal
equilibrium. Therefore, the procedure is coupled with a continuation in the applied voltage. In [32], the
two-dimensional mesh is adaptively refined using an error estimator motivated by results of Hoppe and
Wohlmuth.

As a numerical example, we simulate a two-dimensional MOSFET (metal-oxide semiconductor field-effect
transistor) which can be employed as a voltage switch. It is the most used device in computer technology.
The transistor has a size of 420 nm×210 nm with an effective channel (source to drain) length of 70 nm
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Figure 2: Geometry of the MOSFET with source S, drain D, gate G, and bulk B contacts.
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Figure 3: Electron density (left, gate contact at the back) and electron temperature (right, gate contact at the
front) in a MOSFET with 70 nm channel length. A part of the bulk region is not shown.

and an oxide thickness of 1.5 nm near the gate contact (see Figure 2). For the physical parameters, we refer
to [32] from which the following pictures are taken. The transistor is simulated using the energy-transport
equations for electrons and the drift-diffusion equations for holes.

The electron density and temperature are shown in Figure 3. Close to the gate contact in the channel region,
the electron density is large compared to the bulk density. In this region, the electron temperature is high
too. The temperature near the the drain junction is larger than at the source junction since the electrons
gain more energy from the electric field during their flow through the device.

The second numerical approach, employed in [27, 37], is based on the dual-entropy formulation (9). Com-
pared to the previous approach, no convective terms appear, and the use of Raviart-Thomas-type mixed fi-
nite elements is sufficient to guarantee a monotone scheme. In [27], the three-dimensional stationary equa-
tions were approximated using a hybridized mixed finite element method with Raviart-Thomas-Nédélec
elements. As above, static condensation allows for a reduction of the number of variables in the mixed-
hybrid formulation. The resulting nonlinear algebraic system is solved by two iterative schemes, either
using the full Newton method with a continuation in the applied voltage and a path-following algorithm
or a Gummel-type strategy, which allows for a complete decoupling of the diffusion system such that
only scalar equations have to be solved in each step. Since Gummel-type iteration procedures have a low
convergence rate, a vector extrapolation technique was employed to improve the convergence.

As an example, we consider a unipolar nonuniform single-gate MESFET (metal-semiconductor field-effect
transistor) with size 1 μm×0.55 μm×0.42 μm (see Figure 4). The electron temperature is depicted in
Figure 5 (left; taken from [27]). The temperature is large at the end of the channel since the kinetic energy
of the electrons gained in the channel is transformed into thermal energy. The current flow is large in the
region between the source and gate contact due to acceleration of the electrons from the electric field (see
Figure 5, right).

In the above simulations, the device temperature is kept constant. We expect that collisions of high-
energetic electrons with the crystal lattice increase the lattice temperature. In the following section, we
present a model which couples the lattice and the particle temperatures.
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Figure 4: Geometry of the three-dimensional single-gate MESFET.

Figure 5: Electron temperature (left) and electron current density (right) in a three-dimensional single-gate
MESFET.

3 Lattice heat modeling
We derive a model for the evolution of the lattice temperature TL by employing thermodynamic principles,
similar as in [5]. To this end, we assume that the total energy u satisfies the balance equation ∂tu+divJu =
−γ , where Ju is the corresponding energy flux density and γ the radiation. In the following, the expressions
for u, Ju, and γ are detailed. Analogous to [5], we define the (scaled) free energy as the sum of the electric
energy and the thermal energies of the lattice, electrons, and holes:

f =
λ 2

2
|∇V |2 +ρTL(logTL −1)+n

(
Tn(logn−1)+Ec

)
+ p

(
Tp(log p−1)−Ev

)
,

where ρ is the product of the (scaled) lattice material density and heat capacity, and Ec and Ev denote the
conduction and valence band-edge energies, respectively. For simplicity, we suppose that these energies
are independent of the lattice temperature. By thermodynamics, the total internal energy u can be written
as

u = f −Tn
∂ f
∂Tn

−Tp
∂ f
∂Tp

−TL
∂ f
∂TL

. (12)

The total energy flux Ju is assumed to be the sum of the displacement current, Fourier flux, the particle
energy fluxes, the currents of the dissipated power, and the currents due to the band energies:

Ju = −λ∇∂tV −κL∇TL − (Sn +Sp)+(Jn + Jp)V − (EcJn +EvJp), (13)

where κL is the lattice heat conductivity. Inserting the free energy into (12) and using (13), a computation
gives

0 = ∂tu+divJu = ρ∂tTL −div(κL∇TL)−H, (14)

where
H = −W +R(n, p)

(
Ec −Ev +

3
2
(Tn +Tp)

)
+ Jn ·∇Ec + Jp ·∇Ev − γ
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Figure 6: Transient electron temperature (left) and lattice temperature (right) in a pn diode at 1.5 V.

is the heat source term which is the sum of relaxation, recombination heat, band-energy Joule heating, and
radiation effects. In [14], it is assumed that the band energies are homogeneous and that the radiation is
linear in TL such that

H = −W +R(n, p)
(

Ec −Ev +
3
2
(Tn +Tp)

)
−SL(TL −Tenv),

where SL denotes the transmission constant and Tenv the environmental temperature. This expression cor-
responds essentially to formula (41) in [50]. We remark that the expression for H differs from those in [5]
and [49] since we take into account the evolution of the thermal energies of the particles via the energy-
transport equations. When using a drift-diffusion model for the electrons, the Joule heating term −Jn ·∇V
has to be added to H (see [16]).

Equation (14) is complemented by an initial condition for TL, homogeneous Neumann boundary conditions
on the insulating boundary parts, and the Robin boundary condition

−κL∇TL ·ν = R−1
th (TL −Ta) on ΓC, (15)

where ν is the exterior unit normal vector on the domain boundary, ΓC the union of all contacts, Rth the
contact thermal resistance, and Ta the temperature of the connected element (the environmental temperature
or the temperature of a circuit element).

We illustrate the transient lattice heating in a one-dimensional silicon bipolar junction diode (pn diode) with
100 nm length. The device is modeled by the bipolar energy-transport equations, coupled to the Poisson
equation (8) and the lattice heat equation (14). Initially, the device is assumed to be in thermal equilibrium,
i.e., the total current of electrons and holes vanishes. The transient response of the electron and lattice
temperature is depicted in Figure 6 (taken from [16]). The electron temperature increases quickly in the
entire device with a temperature maximum of about 3300 K in the n-region and then decreases slightly until
the steady state is reached with a temperature minimum around the junction. The increase of the lattice
temperature is significantly slower with a maximum of 325 K at steady state. Due to the high thermal
conductivity, the lattice temperature is almost constant in the device.

Semiconductor devices are usually part of an electric circuit. In the following section, a circuit model is
detailed including semiconductor devices.

4 Circuit modeling
This section is concerned with the modeling of electric circuits containing semiconductor devices. To
simplify the presentation, the circuit is assumed to contain, besides of the semiconductor devices, only
(ideal) resistors, capacitors, inductors, and voltage and current sources. The circuit is modeled by em-
ploying modified nodal analysis [47, 48], whose basic tools are the Kirchhoff laws and the current-voltage
characteristics of the basic elements. We replace the circuit by a directed graph with branches and nodes.
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Branch currents, branch voltages, and node potentials (without the mass node) are introduced as (time-
dependent) variables. Then the circuit can be characterized by the incidence matrix A = (aik) describing
the node-to-branch relations, with

aik =

⎧⎨⎩ 1 if the branch k leaves the node i,
−1 if the branch k enters the node i,

0 else.

The network is numbered in such a way that the indidence matrix consists of the block matrices AR, AC,
AL, Ai, and Av, where the index indicates the resistive, capacitive, inductive, current source, and voltage
source branches, respectively. The semiconductor device is included into the network model employing
the semiconductor incidence matrix AS = (aS

ik) defined by

aS
ik =

⎧⎨⎩ 1 if the current jk enters the circuit node i,
−1 if the reference terminal is connected to the node i,

0 else.

The current-voltage characteristics for the basic elements are given by

iR = gR(vR), iC =
dqC
dt

(vC), vL =
dφL
dt

(iL),

where gR denotes the conductivity of the resistor, qC the charge of the capacitor, and φL the flux of the
inductor. Moreover, iα and vα with α = R, C, L, are the branch current vectors and branch voltage vectors
for, respectively, all resistors, capacitors, and inductors.

Denoting by is = is(t), vs = vs(t) the input functions for the current and voltage sources, respectively,
the Kirchhoff laws lead to the following system of differential-algebraic equations in the charge-oriented
modified nodal approach [47]:

AC
dqC
dt

(A

C e)+ARgR(A


R e)+ALiL +Aviv +AS jS = −Aiis, (16)

dφL
dt

(iL)−A

L e = 0, A


v e = vs, (17)

for the unknowns e(t), iL(t), and iv(t), where e(t) denotes the vector containing the node potentials. Equa-
tion (16) is the Kirchhoff current law for the complete circuit, where the current-voltage relations for the
resistors and capacitors have been included. The first equation in (17) describes the voltage-current char-
acteristic for the inductors, and the second equation determines the node potentials adjacent to the given
voltage sources.

The circuit is coupled to the device through the semiconductor current jS in (16), defined by

jS =
∫

Γ
(Jn + Jp −λ∂t∇V ) ·νds, (18)

where Γ is some contact (terminal), and through the boundary conditions for the electric potential, given
by V (t) = e j(t)+Vbi if the terminal Γ is connected to the circuit node j. Here, e j denotes the potential at
the circuit node j and Vbi is the built-in potential determined by the doping profile and the intrinsic density
(see formula (11) in [16]).

Equations (16)-(17) represent a system of differential-algebraic equations (DAEs). Under certain assump-
tions on the topology of the network, the (tractability) index of the system is at most two [46, 47]. Moreover,
if the circuit does neither contain so-called LI-cutsets nor CV-loops with at least one voltage source, the
index is at most one [46].

For the numerical integration of DAEs, Runge-Kutta methods or backward difference formulas (BDFs) can
be employed. For Runge-Kutta methods applied to DAEs, we refer, e.g., to [30]. Only implicit Runge-
Kutta schemes are feasible for DAEs, and stiffly accurate methods provide the best properties. Concerning
BDF methods, k-step BDFs (with k < 7) for index-1 DAEs are feasible for sufficiently small time steps,
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Figure 7: Rectifier circuit (left); energy density in a bipolar diode (right).

and they are convergent with the same order as in the case of explicit ordinary differential equations [38].
The numerical integration of index-2 DAEs with BDFs is studied in [9, 30]. In [46], quasilinear index-2
DAEs, as they occur in circuit simulation, were examined. We have employed the 2-step BDF method in
the following simulations.

As an illustration, we consider a rectifier circuit modeled by the energy-transport equations for the elec-
trons, the drift-diffusion equations for the holes, and the above circuit equations (presented first in [13]).
After time discretization of the complete system, the particle transport equations are approximated by ex-
ponentially fitted hybrid-mixed finite elements as explained in Section 2.2. In this example, the lattice
temperature is assumed to be constant but not the electron temperature. The circuit contains four pn diodes
each of which with length 100 nm (see Figure 7, left). Initially, the system is assumed to be in thermal
equilibrium. The voltage source is a sinusoidal signal with frequency 10 GHz.

In Figure 7 (right) the energy density in one of the diodes during one oscillation of the circuit is presented.
The energy density is only significant in the forward biased cycle, whereas it is very small for backward
bias.

Next, the behavior of the current through one diode and through the circuit using the transient or stationary
energy-transport (ET) equations and the transient drift-diffusion (DD) model is investigated. Figure 8
(left) clearly shows the rectifying behavior of the circuit. We also observe a capacitive effect at this rather
high frequency. The largest current is obtained from the drift-diffusion model since we have assumed a
constant electron mobility such that the drift is unbounded with respect to the modulus of the electric field.
The stationary energy-transport model is not able to catch the capacitive effect at the junction. Similar
statements hold for the output signal of the circuit (Figure 8, right).
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Figure 8: Current through a 0.1 μm diode in a 10 GHz circuit (left); output signal of the circuit (right).
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5 Thermal network modeling
The thermal network describes how the heat is produced and how it is evolving in the circuit topology.
To simplify the presentation, we consider only one semiconductor device in the network. Moreover, as a
compromise between physical accuracy and fast numerical simulation, all thermally relevant elements in
the circuit – except the semiconductor device – are modeled by zero- or one-dimensional structures.

We consider the following elements in the thermal network [6, 7]. Lumped thermal elements are zero-
dimensional objects (for instance, resistors or contact nodes) to which a spatially constant temperature
T̂ �(t) is associated. Distributed thermal lines are modeled in one space dimension (for instance, electric
lines or circuit elements) with an associated temperature T d(x, t), x ∈ [0,Lth]. Moreover, a distributed semi-
conductor device possesses the temperature TL(x, t) as described in Section 3. Adjacent lumped elements
are considered as a zero-dimensional object with temperature T̂ . Then we assign the temperature at the
interface of connected distributed elements and an artificial zero-dimensional element (thermal node) with
temperature T̂ and without thermal mass. This forms a network with lumped-distributed interfaces only, in
which the nodes represent the zero-dimensional units and the branches represent the distributed elements.

The thermal network is characterized by the thermal incidence matrix Ath
d = (ath

i j) and the thermal semicon-
ductor incidence matrix Ath

S = (ath
S,i j) defined by

ath
i j =

⎧⎨⎩ 1 if the contact at x = 0 of branch j is connected to node i,
1 if the contact at x = Lth of branch j−md is connected to node i,
0 else,

ath
S,i j =

{
1 if the terminal j is connected to thermal node i,
0 else,

where md is the number of thermal lines and [0,Lth] the interval of the distributed element.

The temperature in the thermal nodes is supposed to evolve according to the heat equation

M̂
dT̂
dt

= F̂d + F̂S − Ŝ(T̂ −TenvI)+ P̂, t > 0. (19)

Here, M̂ is a diagonal matrix containing the thermal masses of the thermal nodes, each of which is given
as the sum of the thermal masses of the lumped elements contributing to the corresponding node. The
thermal mass is the product of the heat capacity, the material density, and the physical volume of the
corresponding element. Furthermore, T̂ is the vector of all temperature values in the thermal nodes, and I
is the identity matrix. The electro-thermal source vector for the thermal nodes P̂ and the heat flux vectors
from the distributed lines F̂d and the device F̂S are defined below in (23), (21), and (22), respectively. The
temperature values in the lumped elements T̂ � can be computed from T̂ by the formula T̂ = MT̂ �, where
the matrix M = (mi j) relates the lumped elements to the thermal nodes, with mi j = 1 if the lumped element
j belongs to the thermal node i and mi j = 0 else.

The vector T d = (T d
j ) of all temperatures of the thermal lines satisfies

Mj∂tT d
j = ∂x(κ j∂xT d

j )−S j(T d
j −Tenv)+Pj, x ∈ (0,L j), t > 0, (20)

where Mj denotes the thermal mass of the j-th element of length L j, κ j is the thermal conductivity, S j the
transmission constant, and P = (Pj) the electro-thermal source vector defined in (23). The above equation
is complemented by initial conditions and Dirichlet boundary conditions, collected in the vectors T d

0 and
T d

1 .

6 The fully coupled model
In this section, we explain the coupling conditions between the subsystems introduced in the previous
sections and give a numerical example of the full coupled thermo-electric semiconductor-circuit system.
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6.1 Coupling conditions

The heat equations (19) and (20) are coupled through the boundary conditions, (T d
0 ,T d

1 )
 = (Ath
d )
T̂ , and

the following equation for the thermal flux:

F̂d = Ath
d

(
Λ0∂xT d(0, t)

−Λ1∂xT d(Lth, t)

)
. (21)

Here, Lth denotes the length of a thermal line and Λ0, Λ1 contain the products of thermal conductivities and
the cross sections of the thermal lines at x = 0 and x = Lth, respectively.

Next, we describe the coupling between the thermal network and the semiconductor device. The influence
of the network on the device is modeled by the boundary condition (15) on the terminal Γk, with Tenv
replaced by the temperature of the connected elements, Ta = (Ath

S )
T̂ . The semiconductor heat flux at
terminal Γk is given by the integral

FS
k =

∫
Γk

JS
th ·ν dσ , such that F̂S(t) = Ath

S (FS
j (t)) j, t > 0. (22)

The thermal flux density JS
th is derived by making the quasi-stationary assumption divJu = 0, where the

energy flux density Ju is defined in (13). Then, inserting the stationary balance equation for the electric
energy, a computation shows that, assuming a constant hole temperature,

divJS
th +∇V · (Jn + Jp) = 0, where JS

th = −κL∇TL −EcJn −Sn

(see [14] for details). This equation indicates that the flux JS
th is responsible for the heat production caused

by the dissipated power and is therefore considered as a heat flux.

For the coupling between the electric and thermal network, we assume that only semiconductor devices
and resistors are thermally relevant. (In the numerical simulation below, thermal effects in the resistor are
neglected.) Electric-to-thermal coupling occurs through the power dissipated by a resistor. We assume that
the resistance is given by R = 1+α1TR +α2T 2

R , where α1 and α2 are some nonnegative parameters and TR
is the temperature of the resistor [6]. The vector TR of all resistor temperature values can be determined
from the temperature vectors of the thermal nodes T̂ and of the distributed lines T d by

TR = K̂
T̂ +K
T̃ d ,

where the lumped values T̃ d are computed from the distributed values T d by taking the mean value, and
the matrices K = (k� j) and K̂ = (k̂� j) are defined by

k� j =
{

1 if the resistor j corresponds to the thermal branch �,
0 else,

k̂� j =
{

1 if the resistor j corresponds to the thermal node �,
0 else.

The electric-to-thermal coupling is realized by the source terms P = (Pj) and P̂ in the heat equations (19)
and (20):

P̂ = K̂PR, P = L−1
R KPR, where PR = diag(iR)A


R e, (23)

iR contains the currents through all resistors, AR denotes the resistor incidence matrix, e is the vector
containing the node potentials, and LR is the resistor length. For a discussion about the proper choice of
the local power distribution, we refer to [6].

Finally, we recall that the coupling between the semiconductor device and the electric circuit is realized
through the semiconductor current (18) in the circuit equation (16) and the node potentials applied to the
semiconductor contacts.
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Figure 9: Clipper circuit with two pn diodes, one resistor, and three voltages sources.

6.2 Numerical example

The complete thermo-electric circuit-semiconductor model is a system of nonlinear partial differential-
algebraic equations. It consists of the energy-transport equations (4), (10) for the electrons, the drift-
diffusion equations (7) for the holes (alternatively, energy-transport equations for the holes may be used),
the Poisson equation (8); the differential algebraic electric network equations (16)-(17); and the thermal
network equations (19)-(21). The coupling conditions are given in (18) and (22)-(23). The unknowns
of the system are the electron, energy and hole densities, n, ne, p, the potential in the device V , the node
potentials e, the currents through inductors, voltage sources, and semiconductor device, iL, iV , jS, the lattice
temperature TL, and the temperature values in the lumped and distributed elements of the thermal network,
T̂ , T d .

As a numerical illustration, we consider a clipper which is employed as an entrance protective circuit to
avoid voltage peaks (taken from [16]). It consists of two pn diodes (modeled in one space dimension), one
resistor, and three voltage sources (see Figure 9). We concentrate on the effect of lattice heating and neglect
thermal effects in the resistor. The sinusoidal input signal Vin has a frequency of 10 GHz. The remaining
voltages are kept constant with Vmin(t) = −U and Vmax(t) = U , where U = 2V. A perfect clipper restricts
the input signal between ±(U +Vth), where Vth is the threshold voltage of the diode. In the present case,
it holds approximately Vth = 0.9 V such that the signal is between ±2.9 V. We have chosen the resistance
such that the output signal should stay below 4 V.

In Figure 10 (left) we depict the input and output signals of the circuit after 30 oscillations of Vin. Whereas
the maximal output signal is below 4 V during the first oscillations, it becomes 4.09 V after 30 oscillations.
A simulation of the same circuit with constant lattice heating keeps the maximum output signal below 4 V.
This shows that the increasing maximal output voltage is caused by lattice heating, as the heated diode
provides less current leading to a larger resistance. We observe from Figure 10 (right) that the device heats
up while being forward biased. As the backward bias period is too short to cool down the device, the lattice
heating accumulates during the first oscillations up to about 360 K.
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Figure 10: Input and output signal of the clipper after 30 oscillations of Vin (left) and distribution of the lattice
temperature in one of the diodes within the first 30 oscillations of Vin (right).
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