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Abstract. In the contribution a possible geometric covariant description for the class of coupled
lumped- and distributed-parameter systems is proposed, where especially boundary and coupling con-
ditions as well as (lumped and distributed) system inputs and outputs are taken into account. By apply-
ing differential geometrical methods dynamic systems are associated with suitable intrinsic geometric
objects, which reflect their dynamics. In this context the systems equations are supposed to describe
(locally) a family of regular fibred submanifolds of some appropriately-constructed manifolds. More-
over, it is shown that the introduced geometric structures are adequate with respect to the first order
Lagrange formalism. Several examples are arranged to illustrate the proposed theory.

1 Introduction
Modeling is an essential or even the most important step for the analysis and design of dynamic systems. Hence, it
may turn out that certain components of physical systems cannot be described by finite-dimensional systems due
to their inadequateness to incorporate some physical effects like transportation delays, spatially-distributed param-
eters, hysteresis nonlinearities, and the like; this often leads to infinite-dimensional systems, which are frequently
termed distributed-parameter systems. In particular, the present work considers coupled lumped- and distributed-
parameter systems, whose evolution along continuous-time is allowed to be governed by coupled ordinary and/or
partial differential equations in general.

In many publications, see, e.g., [2, 3, 6, 8] and references therein, differential geometric methods have already
emerged as a (standard and) useful tool for the geometric analysis of finite- and infinite-dimensional systems.
Hence, the approaches inherently rely on a proper geometric description of the considered dynamic systems. With
regard to the class of coupled infinite-dimensional systems there are often important related aspects neglected
resp. can not be captured appropriately, like (distributed and lumped) system inputs, system outputs, boundary
conditions, etc. Complementarily, the main issue of this contribution is to emphasize that by some adequate
adaptions and extensions of those methods as well as the introduction of appropriate geometric structures a proper
geometric description of the considered systems is obtained. Thereby, the dynamic systems are associated with
some suitable geometric objects reflecting their dynamics in such a manner that the description is provided in a
coordinate-free manner. In addition, the first order Lagrange formalism (with first-order Lagrangian density) is
considered for coupled infinite-dimensional systems. It is illustrated that the proposed geometric structures fit well
into this theory resp. for the derived systems.

The article is organized as follows. In Section II (coupled) infinite-dimensional dynamic systems of interest are
discussed, and a suitable geometric description is provided. In Section III dynamic systems are considered, which
are derived by means of the first order Lagrange formalism based upon the geometric structures, which are in-
troduced in Section II. In addition, some examples are arranged to illustrate the proposed theory. Finally, the
contribution finishes with some conclusions. The utilized notation and relevant mathematical preliminaries are
introduced successively when necessary.

2 Geometry and Dynamic Systems
This contribution applies the concept of smooth manifolds and bundles, see, e.g., [1, 2, 8] for an introduction and
much more details. Let Z and B be smooth manifolds, then a bundle is a triple (Z ,πZ ,B) with the total space
Z , the base space B and the projection (or fibration) πZ : Z →B, where π−1

Z
(p) for any p ∈B denotes the fiber

over p. If there is no danger for confusion, a bundle is denoted πZ : Z → B or simply Z → B for short. The
manifold B has the coordinates

(
Zi) and Z the adapted coordinates (Zi,zα ). Zi, i = 1 . . .nZ are the independent

coordinates and zα , α = 1 . . .nz the dependent coordinates, where the terminology is self-explanatory if the concept
of sections is introduced. A section γ of the bundle Z → B is a map γ : B → Z such that π ◦ γ = idB with the
identity map idB on B. For brevity, the Einstein summation convention is utilized throughout the article and the
ranges of the indices are not always stated explicitly if they are clear form the context. The term C∞ (M ) denotes
the set of smooth functions on a manifold M .

In the main part of this section extensive use of two methods is made to construct new bundles from given ones.
If Z → B and Z̄ → B are bundles over the same base space B, then the fibred product bundle is given by the
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triple (Z ×BZ̄ ,π
Z ×BZ̄

,B), where the total manifold is defined by {(a1,a2) ∈Z × Z̄ : πZ (a1) = π
Z̄

(a2)} and
the projection by (π

Z ×BZ̄
)(a1,a2) := πZ (a1) = π

Z̄
(a2). If N is a manifold and ρ : N → B a map, then the

pull-back bundle of Z → B, defined by ρ , is the triple (ρ∗ (Z ) ,ρ∗ (Z ) ,N ), where the total space is defined
by {(a1,a2) ∈ N ×Z : ρ(a1) = πZ (a2)} and the projection by ρ∗(πZ )(a1,a2) = a1. If ρ is an embedding, the
pull-back bundle is also called restricted bundle, see, e.g., [8].

For a section γ : B → Z the kth-order partial derivatives are given by

γα
J = ∂Jγα =

∂ k

∂ j1
1 . . .∂ jnXnX

γα , ∂i =
∂

∂Zi

with the ordered multi-index J = j1, . . . , jnX , k = #J = ∑nX
i=1 ji and ∂Jγα = γα for #J = 0. For brevity ji = δi j,

j ∈ {1, . . . ,nX} will be denoted as 1 j and ji + δi j as J + 1 j with the Kronecker symbol δ . Then, the section γ can
be extended to a map jn (γ)(Z) = (Zi,∂Jγα(Z))with 0 � #J � n, which is called the nth jet of γ at Z. The set of nth

jets (or nth-order prolongations) of sections B → Z can also be equipped with the structure of manifold Jn(Z ),
which is called the nth jet manifold and has the adapted coordinates (Zi,zα

J ), 0 � #J � n where xα = xα
J for #J = 0.

By means of Jn(Z ) the bundles πn : Jn(Z ) → B; (Zi,zα
J ) �→

(
Zi) and πn

n−1 : Jn(Z ) → Z ; (Zi,zα
J ) �→

(
Zi,zα)

among others can be constructed.

The previous differential geometrical constructs and objects permit to introduce a unifying formal framework for
(coupled) distributed-parameter systems, where all governing equations, inputs and outputs are considered in a
convenient manner. Hence, first the main underlying structures must be provided. In this work a dynamic system
is assumed to be described by different sets of equations, where some of those may have different (spatial) carriers.
These domains are denoted by

D̃i , i = 1, . . . ,ndom , (1)

and are supposed to be n
D̃i

-dimensional, compact manifolds (∀i n
D̃i

∈ N0) with global volume form and the coher-
ently orientable boundaries ∂ D̃i (if the dimension is n

D̃i
> 0), respectively. Later on the geometric containers for

the system equations rely on the geometric structures

Ωδ → T , δ = 1, . . . ,nd , (2)

where the total spaces are constructed as follows

Ωδ = T ×Dδ , Dδ = D̃i , i = 1, . . . ,ndom or Ωδ = T ×Dδ , Dδ = {} , (3)

where the domains (1) are applied. Concretely, Ωδ are the so-called time-space cylinders, which all share the same
time manifold T = R. The (fibred product) manifolds Ωδ are equipped with a set of coordinates

(
Xiδ

)
, where X1δ

is equal to the time coordinate1 and
(
X jδ

)
, jδ → j = 2, . . . ,nX ,δ are the spatial coordinates.

Remark 1 A special index notation is applied here to handle the variable sets for the different manifolds Ωl . The
index set is given by some I ⊂ N2, where the corresponding family is defined by f : I → {X jl};( j, l) �→ X jl . In
particular, the term X jl represents variables on Ωl , where the notation jδ → j = 1, . . . ,nX ,δ indicates that for fixed
δ ∈ [1, . . . ,nd ], the index j has range

[
1, . . . ,nX ,δ

]
with nX ,δ ∈ N.

In general the dynamic systems are assumed to be of the form

0 = f μδ (X ,xJ,uK) , μδ → μ = 1, . . . ,ne,δ ,

yζδ = gζδ (X ,xJ,uK) , ζδ → ζ = 1, . . . ,ny,δ , δ = 1, . . . ,nd
(4)

with ∑δ ne,δ system equations, ∑δ ny,δ output equations, and the sets of variables

X = (X jδ ) , jδ → j, . . . ,nX ,δ ,

xJ = (xαδ
Jδ

) , αδ → α, . . . ,nx,δ ,

uK = (uςδ
Kδ

) , ςδ → ς , . . . ,nu,δ ,

where the (sets of) multi-indices,

J = (Jδ ) , K = (Kδ ) , ,Jδ ,Kδ ∈ N
nX ,δ
0 , #Jδ ≤ n , #Kδ ≤ n

1Note that all time coordinates X1δ on Ωδ coincide with each other.
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are applied. In particular, we follow here the concept of Remark 1, i.e., the index δ of f μδ and gζδ indicates the
carriers Ωδ of the equations. Moreover, for simplicity the functions f μδ , gζδ are assumed to be smooth2. Although
this assumption is not often necessary, hence, it simplifies matters since many distinctions of cases can be avoided.

Before a suitable geometric description for dynamic systems of the form (4) is actually provided, some further
appropriate bundles are required, which build upon the structures (2). By means of the manifolds Ωδ the bundles

EX ,δ → Ωδ , EU ,δ → Ωδ , (5)

with δ = 1, . . . ,nd can be introduced, where (Xiδ ,xαδ ) and (Xiδ ,uςδ ) are the (local) coordinates on EX ,δ and EU ,δ ,
respectively. Thereby, Xiδ , iδ → i = 1 . . .nX ,δ denote the independent coordinates, and xαδ , αδ → α = 1, . . . ,nx,δ
as well as uςδ , ςδ → ς = 1 . . .nu,δ the dependent coordinates. Obviously, the previous geometric structures share
the same base spaces Ωδ and, thus, the fibred product bundles

Eδ = EX ,δ ×Ωδ EU ,δ → Ωδ (6)

can be constructed with the help of (5). Since we are interested in a geometric definition of dynamic systems of
the form (4) the jet bundles

Jn (Eδ ) → Ωδ (7)

are required, where nth jet manifold Jn (Eδ ) possesses the coordinates (Xiδ ,xαδ
Jδ

,uςδ
Kδ

).

In order to state an suitable container for the system equations (4) the concept of a pull-back bundle is exploited.
This procedure permits to incorporate boundary and coupling conditions in a convenient way. Let us first consider
the bundle Jn (

EX ,δ1

)
→ Ωδ1 with δ1 ∈ [1, . . . ,nd] and n ≥ 0. If

ιΩδ2 ,Ωδ1
: Ωδ2 → Ωδ1 , δ1 �= δ2 , δ2 ∈ [1, . . . ,nd] (8)

is an embedding, then the following pull-back bundle

ι∗Ωδ2 ,Ωδ1

(
Jn (

EX ,δ1

))
→ Ωδ2 (9)

can be constructed with the (local) coordinates (Xαδ2 ,Xαδ1 ,x
αδ1
Jδ1

) on ι∗Ωδ2 ,Ωδ1

(
Jn (

EX ,δ1

))
, as depicted in figure 1.

Jn(EX ,δ1) ι∗Ωδ2 ,Ωδ1
(Jn(EX ,δ1))

Ωδ1

πn
EX ,δ1

�
�

ιΩδ2
,Ωδ1 Ωδ2

ι∗Ωδ2 ,Ωδ1
(πn

EX ,δ1
)

�

Figure 1: Pull-back bundle

A section γΩδ2
: Ωδ2 → ι∗Ωδ2 ,Ωδ1

(
Jn (

EX ,δ1

))
is related to a section γΩδ1

: Ωδ1 → Jn (
EX ,δ1

)
by

γΩδ2
= γΩδ1

◦ ιΩδ2 ,Ωδ1
= ι∗Ωδ2 ,Ωδ1

(γΩδ1
) , (10)

which actually justifies the notation ι∗Ωδ2 ,Ωδ1
(·). Apparently, a more concise notation for the coordinates on

ι∗Ωδ2 ,Ωδ1

(
Jn (

EX ,δ1

))
is

(Xαδ2 , ι∗Ωδ2
,Ωδ1

(
Xαδ1

)
, ι∗Ωδ2

,Ωδ1
(x

αδ1
Jδ1

)) , (11)

however, the embeddings are neglected in the work if they are clear from the context.

Example 1 Let us consider a string with normalized physical parameters defined on the domain D1 = [0,1], which
is described by

f 11 (X ,xJ) = x11
20 − x11

02 = 0 ,

with f 11 (X ,xJ) ∈ C∞ (
J2 (E1)

)
. Thereby, the bundle E1 → Ω1 is utilized with the coordinates (X11 ,X12 ,x11),

(X11 ,X12) on E1 and Ω1 = T ×D1, respectively. If the string is clamped at D2 = [0], apparently, it is not suitable
to set f 21 = ι∗Ωδ2

,Ωδ1
(x11

00) = 0 with f 21 being an element of C∞(J2(E1)). Hence, a consistent alternative is

ι∗Ω2,Ω1
(x11

00) = f 12 (X ,xJ) ∈C∞ (
ι∗Ω2,Ω1

(
J2 (E1)

))
.

2Note that the solutions do not have to be smooth.
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For the considered problems pull-back bundle structures are essential and even required to consider interactions
between different subsystems. Following the previous concepts the special manifolds

M
n
δ = Jn (Eδ )× ι×,∗

Ωδ
(Jn (E )) , (12)

as well as the bundle structures
M

n
δ → M

n−1
δ → . . . → M

0
δ → Ωδ (13)

can be introduced with
ι×,∗
Ωδ

(·) =×̆
δ

ι∗Ωδ ,Ωδ̆

(
(·)δ̆

)
∀δ̆ ∈ [1, . . . ,nd] ,

and
ιΩδ ,Ωδ̆

: Ωl → Ωδ̆ being an embedding. (14)

Analogously, in (12) we have

M
n
δ = Jn (Eδ )× ι×,∗

Ωδ
(Jn (E )) = Jn (Eδ )××̆

δ

ι∗Ωδ ,Ωδ̆

(
Jn (

Eδ̆
))

.

With the manifolds M n
δ at our disposal we are able to give a geometric definition of a so-called jet system. Neither

it requires (local) coordinates nor equations since a jet system is defined as an intrinsic geometric object, namely a
family of submanifolds.

Definition 1 A jet system of order n is a family of regular fibred submanifolds Sn
δ ⊂ M n

δ of M n
δ .

Remark 2 In comparison to, e.g., [2, 3, 8], a jet system resp. a (system of) differential equation(s) is not defined as
a regular fibred submanifold of a single jet bundle. This is due to the fact that we consider here the class of coupled
lumped and distributed parameter systems, where, in particular, the aspects of boundary and coupling conditions,
different validity areas, (lumped and distributed) system inputs and outputs, etc. are taken into account.

Definition (1) enables us now to provide an adequate container for the system equations (4), which are assumed to
define a jet system, i.e., a jet system is described by systems of equations (locally).

Theorem 1 A (coupled) dynamic system of the form (4) is a jet system if for any δ ∈ {1, . . . ,ne} the set of system
equations f μδ (X ,xJ,uK) = 0 valid on Ωδ describes a (locally) regular fibred submanifold Sn

δ ⊂ M n
δ of M n

δ .

Beside the geometric container for the system equations (4) the output equations are supposed to satisfy

yζδ = gζδ (X ,xJ,uK) ∈C∞ (
M

n
δ
)

.

From now on the notions of dynamic systems and jet systems are used synonymously, even though they represent
two different mathematical objects. A jet system states the family of submanifolds Sn

δ , whereas a dynamic system
is a local representation of Sn

δ . It is worth mentioning that obviously both a jet system and a dynamic system of the
form (4) cannot possess a unique (local) representation.

Let us apply the theory to an example in order to illustrate the proposed methods.

Example 2 Suppose a flexible mechanical system as depicted in Figure (2). Basically it represents gantry crane
with a heavy chain and a horizontally-movable carriage. For the modeling we assume that the displacements of
the chain are small, the chain length L, the chain force P(X21) = g

(
ρ(L−X21)

)
for 0 ≤ X21 ≤ L, the density

ρ and the carriage mass mc; any rotary inertia of the chain is neglected. A possible domain structure is given
by D1 = [0,L], D2 = [L], D3 = [0], wherewith the bundles3 E1 → Ω1, E2 → Ω2 can be introduced with the (local)
coordinates

(
X11 ,X21

)
∈ Ω1,

(
X12

)
∈ Ω2,

(
X13

)
∈ Ω3 and

(
X11 ,X21 ,x11

)
∈ E1,

(
X12 ,x12 ,u12 ,y12 ,y22

)
∈ E2. Then,

3For this example a bundle E3 → Ω3 is obviously not required.
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γ11(X11 ,0) = γ12(X12)

γ11(X11 ,X21) ∂11γ11(X11 ,X21))

X21

carriage (mass mc)

chain (density ρ)

y11 = γ11(X1,0)

y21 = ∂21γ11(X1,0)

0

Figure 2: Schematic diagram of gantry crane system

aligned to [4] a mathematical model for the system in the form (4) reads as4

0 = f 11(X ,xJ,uK) = ρx11
20 + gρx11

01−g(ρ(L−X21))x11
02 ,

0 = f 12(X ,xJ,uK) = mcx12
20 −gρLι∗Ω2,Ω1

(x11
01)−u12 ,

0 = f 22(X ,xJ,uK) = ι∗Ω2,Ω1
(x11

00)− x12
0 ,

0 = f 32(X ,xJ,uK) = ι∗Ω2,Ω1
(x11

10)− x12
1 ,

0 = f 13(X ,xJ,uK) = ι∗Ω3,Ω1
(x11

01) ,

y12 = g12(X ,xJ,uK) = ι∗Ω2,Ω1
(x11

00) ,

y22 = g22(X ,xJ,uK) = ι∗Ω2,Ω1
(x11

01) ,

where a suitable geometric container for the system equations is given by the following family of submanifolds

S2
1 :=

{
p ∈ M 2

1 : f 11 (p) = 0
}

⊂ M 2
1 = J2 (E1) ,

S2
2 :=

{
p ∈ M 2

2 : f 12 (p) = f 22 (p) = f 32 (p) = 0
}

⊂ M 2
2 = J2 (E2)× ι∗Ω2,Ω1

(
J2 (E1)

)
,

S2
3 :=

{
p ∈ M 2

3 : f 13 (p) = 0
}

⊂ M 2
3 = J2 (E3)× ι∗Ω3,Ω1

(
J2 (E1)

)
.

M
2
2 M

2
1 M

2
3

J2(E2)× ι∗Ω2,Ω1
(J2(E1))

KK
J2(E1)

KK
ι∗Ω2,Ω1

(J2(E1))

KK

Ω2

π2
E2
× ι∗Ω2,Ω1

(π2
E1

)

� ιΩ2,Ω1� Ω1

π2
E1

�
�ιΩ3,Ω1 Ω3

ι∗Ω3,Ω1
(π2

E1
)

�

Figure 3: Geometric structures for beam system

Henceforth, for simplicity and legibility the following product bundles are constructed and applied throughout the
work, namely

EX → Ω , EU → Ω , E → Ω (15)

with EX =×δ EX ,δ , EU =×δ EU ,δ , E =×δ Eδ as well as Ω =×δ Ωδ , l = 1, . . . ,nd .
4The embeddings should actually be clear from the context and are only stated here for illustration.
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Finally, we need of course the notion of a solution, which is represented by a section in the presented geometric
framework. Due to the previous bundle constructions a solution of the system (4) is a section (γ,μ) : Ω → E with
the trajectory γ : Ω → EX and the input μ : Ω → EU , which satisfies the equations

0 = f μδ (X ,xJ,uK)◦ jn (γ,μ)(X) . (16)

The associated outputs follow as

yζδ ◦ jn (μ ,γ)(X) = gζδ ◦ jn (γ,μ)(X) . (17)

Topics like solvability and well-posedness of solutions are not addressed within this contribution. Here, the equa-
tions are considered from a theoretical point of view, and some geometric definition and description are provided.
Hence, closely related with the notion of a jet system is the requirement that there are no further, more restricting,
equations, which are hidden behind the system equations. This leads us directly to the concept of local solvability.

Definition 2 A dynamic system of the form (4) or a jet system is locally solvable if for any point p0 ∈ Sn
δ , δ =

1, . . . ,nd there is at least one (local) solution (γ,μ) : Ω → EX of the system.

Geometrically, the local solvability of a dynamic system requires that there are no further integrability conditions.
In general those can be found by suitable prolongation and projection of the system equations, see, e.g., [9, 3], and
may arise due to cross-derivatives and the prolongation of lower-order equations.

3 Lagrange Formalism
Next, the investigations are focused on free (coupled) dynamic systems, which are derived by means of the first
order Lagrangian formalism, where problems are described by first-order Lagrangian densities

lλ dXλ with lλ ∈C∞(J1(EX ,λ )) , λ = 1, . . . ,nl (18)

and the volume form dXλ =
∧nX ,λ

i=1 dXiλ on Ωλ . The theory can be extended to higher order as well, hence ambigu-
ities arise, see, e.g., [2], which are omitted here for simplicity. The final result is stated by sets of system equations
including boundary and coupling conditions, which can also be captured under certain conditions by the geometric
picture of dynamic systems as introduced in Section II.

The tangent and cotangent bundle with respect to a smooth manifold B are denoted by T (B)→B and T ∗(B)→
B, respectively, which are equipped with the induced coordinates (Zi, Żi) and (Zi, Żi) with respect to the holonomic
bases {∂i} and

{
dZi}. The exterior algebra is denoted by∧(T ∗(B)) with the exterior derivative d :∧k(T

∗(B))→
∧k+1(T

∗(B)), the interior product � :∧k+1(T
∗(B))→∧k(T

∗(B)) written as v�ω , v : Z →T (B) and ω : B →
∧k+1(T ∗(B)), and the exterior product ∧, where ∧k(T ∗(Z )) →Z is the exterior k-form bundle on Z . The Lie
derivative of a form ω : B →∧(T ∗(B)) along a vector field f : B → T (B) is given by f (ω).

Let us consider the same bundle πZ : Z → B as used at the beginning of Section II. Then, the vertical vector
bundle V (Z ) → Z , which is a subbundle of T (Z ) → Z , consists of all fields v : Z → T (Z ), which satisfy
π∗(v) = 0. A π-vertical vector field locally generates a fiber-preserving bundle automorphism

( fB , fZ ) = (idB,exp(εv))) : B×Z → B×Z , (19)

see, e.g., [8]. Furthermore, instead of prolonging the automorphism to Jn(Z ), its infinitesimal generator can be
prolonged by the following general formula,

jnv = dJ(vα)∂ J
α , 0 � #J � n , v = vα ∂α , dJ = (d1)

j1 ◦ · · · ◦ (dnX ) jnZ (20)

where di : Jn(Z )→ πn,∗
n−1(T (Jn−1(Z ))) and dJ (vα)= vα for #J = 0. The operator di, which meets (di f )◦ jn+1γ =

∂i f ( jnγ) for all f ∈ C∞(Jn(Z )) and γ : B → Z , is called the total derivative with respect to the independent
variable Zi. It is defined by di = ∂i + zα

J+1i
∂ J

α , ∂ J
α = ∂

∂ zα
J

in adapted coordinates (Zi,zα
J ).

Based on the introduced bundle structures of Section II the Lagrangian densities (18) are applied to define the
Lagrangian functional L : Γ(EX ) → R, which reads as

L (γ) =
nl

∑
λ=1

∫
Ωλ

( j1γ)∗(lλ dXλ ) (21)

with Γ(EX ) being the set of sections γ : Ω → EX . If admitting only fiber preserving variations a section γ : Ω →
EX will be called extremal, iff

d
dε

L (φε ◦ γ)

∣∣∣∣
ε=0

=
d

dε
L (exp(εvL )γ)

∣∣∣∣
ε=0

=
nl

∑
λ=1

∫
Ωλ

( j1γ)∗( j1vL (lλ dXλ )) = 0 (22)
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is met for any valid variational field vL : EX → V (EX ) with the flow φ : R×EX → EX and the shortcut φε =
φ(ε, ·) : EX → EX . Since only fiber preserving variations are permitted, the field vL represents a vertical vector
field and, therefore, the bundle automorphism (19) is utilized. The reader should note that due to the underlying
geometric structures actually a set of vector fields

vL = (vL ,λ ) with vL ,λ : EX ,λ → V (EX ,λ )

and a set of flows
φε = (φε,λ ) with φε,λ : EX ,λ → EX ,λ

are considered. By using the relation j1vL (ωλ ) = j1vL �d(ωλ )+d( j1vL �ωλ ) for ωλ : Ωλ → πn,∗ (∧(T ∗ (Ωλ )))
and Stokes’ Theorem, see, e.g., [1], the functional (22) can be rewritten in the form

nl

∑
λ=1

∫
Ωλ

( j1γ)∗( j1vL �dlλ ∧dXλ )︸ ︷︷ ︸
=I1(γ)=0

+
nl

∑
λ=1

∫
∂Ωλ

ι∗Ωλ
( j1γ)∗( j1vL �lλ dXλ )︸ ︷︷ ︸
=I2(γ)=0

= 0 (23)

with the inclusions ιΩλ : ∂Ωλ → Ωλ . The term I2 (γ) vanishes since j1vL �ldX = 0 due to the use of a vertical
vector field vL . Hence, it may happen that the remaining term I1 (γ) is not appropriate in the current form since
( j1γ)∗( j1vL �dlλ ∧ dXλ ) can depend on the (spatial) derivatives of components of the vector field vL and, thus,
can contribute to the so far vanishing boundary term I2 (γ). Fortunately, the variational problem can be replaced
with the variational problem for so-called Lepegian equivalents ρL,λ , which satisfy h0

(
ρL,λ

)
= lλ dXλ with the

horizontal projection h0 : ∧1J1 (EX )→∧1,0J1 (EX ), see, e.g., [2]. The attention is especially restricted here to the
so-called Poincare-Cartan forms cλ = lλ dXλ + ∂ 1i

αλ lλ (dxαλ − xαλ
1i

dXiλ ). The conditions5 on the domains Ωλ and
on the (spatial) boundaries T × ∂Dλ follow as

nl

∑
λ=1

∫
Ωλ

( j2γ)∗(vL �(δαλ (lλ )dxαλ ∧dXλ )+
nl

∑
λ=1

∫
T ×∂Dλ

ι∗Ωλ
( j1γ)∗( j1vL �(∂ 1i

αλ lλ dxαλ ∧∂iλ �dXλ )) = 0 (24)

with the Euler-Lagrange operator δαλ : ∂αλ + diλ ∂ 1i
αλ .

It is worth noting that more specific conditions may be implied by physics or the concrete choice. However, these
conditions have to fulfill equation (24) in any case. Thus, it will be incumbent upon the modeler to set suitable and
valid conditions. Finally, by a suitable choice of boundary and coupling conditions and by appropriate extraction
of the conditions one yields6

f τλ (X ,x) = 0 or xαλ = σαλ (Xiλ ) on Ωλ , (25)

where the right-hand side results by the explicit selection of functions σαλ (Xiλ ). Moreover, similarly, conditions
of the form

f τθ̄ (X ,x) = 0 or ι∗Ωθ̄ ,Ωλ
= σ̄αλ (ι∗Ωλ

(Xiλ )) on Ωθ , (26)

with Ωθ ⊂ T × ∂Dλ for some λ ∈ [1, . . . ,nl], are gathered. Here, it is worth mentioning that the appearing
embeddings exhibit a form

ιΩθ̄ ,Ωλ = ι∂Ωλ ,Ωλ

∣∣
Ωθ

= ιΩλ

∣∣
Ωθ

: Ωθ → Ωλ

in comparison to the general case (14).

Apparently, the equations (25) and (26) can be written in the form (4) and if they obey Theorem 1, the equations are
a (local) representation of a jet system. Thus, the first-order Lagrange formalism for (coupled) dynamic systems is
conform with the geometric structures introduced in the preceding section.

Example 3 Let us consider the same flexible mechanical structure as in Example 2, hence, where the force F is
neglected. Then, the Lagrangian functional is obtained by taking the difference of kinetic and potential energy,

L (γ) =

∫
Ω1

( j1γ)∗(

(
ρ
2

(x11
10)

2 −
P

(
X21

)
2

(x11
01)

2

)
dX11 ∧dX21

︸ ︷︷ ︸
l1dX1

)+

∫
Ω2

( j1γ)∗(
mc
2

(x11
10)

2dX12︸ ︷︷ ︸
l2dX2

) .

In accordance to (24) we yield the condition∫
Ω1

( j2γ)∗(δ11(l1)dX1)+

∫
T ×∂D1

ι∗Ω1
( j1γ)∗( j1vL �(∂ 12

11
l1dx11 ∧∂21�dX1)︸ ︷︷ ︸
−gρLx11

01 dx11∧dX21

)+

∫
Ω2

( j2γ)∗(δ12(l2)dX2) = 0 .

5Note that there is no variation permitted on the time boundaries ∂T ×Dλ .
6The well-known second-order Euler-Lagrange equations δαλ (lλ ) = ∂αλ lλ +diλ (∂ 1i

αλ lλ ) = 0 may appear as part of the equations (25).
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Then, by applying

ιΩ2,Ω1 = ι∂Ω1,Ω1

∣∣
Ω2

= ιΩ1

∣∣
Ω2

= Ω2 → Ω1;(X12) �→ (X11 = X12 ,X21 = 0)

and the selection of valid and reasonable boundary and coupling conditions the mathematical model is gathered,
which reads as

0 = f 11(X ,xJ) = δ11(l1) = ρx11
20 + gρx11

01−g(ρ(L−X21))x11
02 ,

0 = f 12(X ,xJ) = δ12(l2)−gρLι∗Ω2,Ω1
(x11

01) = mcx12
20 −gρLι∗Ω2,Ω1

(x11
01) ,

0 = f 22(X ,xJ) = ι∗Ω2,Ω1
(x11

00)− x12
0 ,

0 = f 32(X ,xJ) = ι∗Ω2,Ω1
(x11

10)− x12
1 ,

0 = f 13(X ,xJ) = ι∗Ω3,Ω1
(x11

01) .

Obviously, the previous equations are of the form (4) and, moreover, they represent a jet system according to
Definition 1 and Theorem 1.

4 Conclusions
In this contribution a possible geometric description for the class of coupled lumped- and distributed-parameter
systems was proposed, which involves and incorporates important aspects like boundary and coupling conditions,
system inputs and outputs, etc. Thereby, intrinsic geometric objects are associated with dynamic systems, which
reflect their corresponding dynamics. In addition, it was outlined that systems derived by means of the first-order
Lagrange formalism are captured by this geometric picture under certain conditions. It is worth mentioning that
such a covariant container for systems equations is very gainful for a control- and system-theoretical analysis to
study certain qualitative properties of systems, see, e.g., [4, 5, 7].
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