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1 Introduction
Most adaptive control schemes documented in the literature [15]-[17],[20] are developed for regulation to known
set-points or tracking known reference trajectories. In some applications, however, the control objective could be
to optimize an objective function which can be a function of unknown parameters, or to select the desired states
to keep a performance function at its extremum value. Self-optimizing control and extremum seeking control
are two methods to handle these kinds of optimization problems. The goal of self-optimizing control is to find a
set of controller variables which, when kept at constant set-points, indirectly lead to near-optimal operation with
acceptable loss [8][25][29]. The task of extremum seeking is to find the operating set-points that maximize or
minimize an objective function. Since the early research work on extremum control in the 1920’s [21], many
successful applications of extremum control approaches have been reported, for example, fuel flow control to
achieve maximum pressure [32], combustion process control for IC engines and gas furnaces [1][28], and anti-
lock braking system control [6].

Real-time optimization has seen a resurgence of interest in the recent years. The traditional approach is the model-
based repeated optimization where the model is adapted using the available measurements and numerical opti-
mization is performed on the updated model [24][37]. An alternative approach to real-time optimization is known
extremum seeking. Extremum seeking control allows the solution of the optimization problem as a control problem
with the advantages related to sensitivity reduction and disturbance rejection.

In the past few years, Krstic et al. [18][19][33] have presented several schemes for extremum-seeking control
of nonlinear systems. First the system is perturbed using an external excitation signal in order to numerically
compute the gradient [3][19]. The excitation can also be possibly generated internally by sliding mode control
[36]. Their framework allows the use of black-box objective functions with the restriction that the objective value
to be minimized is measured on line. Although this technique has been proven useful for some applications
[34], the lack of guaranteed transient performance of the black-box schemes remains a significant drawback in its
application. Alternatively an adapted model of the system is used for analytical evaluation of the gradient [9]. The
extremum seeking framework proposed by Guay and Zhang [9] assumes that the objective function is explicitly
known as a function of the system states and uncertain parameters from the system dynamic equations. Parametric
uncertainties make the on-line reconstruction of the true cost impossible such that only an estimated value based
on parameter estimates is available. The control objective is to simultaneously identify and regulate the system to
the lowest cost operating point, which depends on the uncertain parameters. The main advantage of this approach
is that one can guarantee some degree of transient performance while achieving the optimization objectives when
a reasonable functional approximation of the objective function is available.

The paper is organized as follows. In Section 2 we shall concentrate on the first class of methods, i.e. perturbation-
based extremum-seeking control methods while Section 3 is dedicated to the second class of methods, i.e. model-
based extremum-seeking control. In both cases, theoretical results are provided and the performance are illustrated
in numerical simulations.
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2 Perturbation-based extremum-seeking control
2.1 The basic scheme

The problem addressed is the steady-state optimization of a nonlinear dynamical system stated as follows :

min
θ

J(x,θ) subject to ẋ = F(x,θ) ≡ 0

where x ∈ Rn is the state, θ ∈ Rm is the control input, F : Rn ×Rm → Rn is a smooth function describing the
dynamics and J : Rn ×Rm → R the objective function. The class usually considered in the literature consists
of systems that can be represented by a cascade of a static nonlinearity and a linear dynamics. To solve this
optimization problem on line, the following extremum-seeking controller is derived from the necessary conditions
of optimality under the assumption that the function J is convex :

θ̇ = k
dJ
dθ

= k

(
∂J
∂θ

− ∂J
∂x

(
∂F
∂x

)−1 ∂F
∂θ

)
(1)

Figure 1: Extremum seeking control via perturbation method inspired from [19]

The main challenge of extremum-seeking is the gradient estimation and the perturbation based schemes add an
excitation signal to the input in order to extract this information (Figure 1). Note that the objective function is
supposed to be directly measured (y = J(x,θ)).

A high pass filter with cutoff frequency ωh isolates the variations of this optimized variable from its average value.
The state that represents the high pass filter is denoted by η . This signal is then modulated by the same excitation
signal. A low pass filter with cutoff frequency ωl and output ξ will filter the resulting signal in order to get the
required gradient, ξ = dJ

dθ . Finally an integral controller with gain k drives this estimated gradient to zero.

The scheme can be summarized using the following equations :

˙̂θ = kξ , θ = θ̂ +asin(ωt) (2)

ξ̇ = −ωlξ +ωl(y−η)asin(ωt) (3)

η̇ = −ωhη +ωhy (4)

The value of the states at steady-state obtained from ẋ = F(x,θ) ≡ 0 is given by x = l(θ). The cost function

at steady-state is given by y = J(l(θ),θ). Deviation variables are then considered: θ̃ = θ̂ − θ ∗, ỹ = y− y∗ and
η̃ = η − y∗ where y∗ is the minimum value of the cost function at steady-state y obtained for θ = θ ∗. Then the
relationship between ỹ and θ̃ is expressed as :

ỹ = J(l(θ ∗ + θ̃),θ ∗ + θ̃)− J(l(θ ∗),θ ∗) ≡ ν(θ̃) (5)

If we assume that x is at steady state, the averaged system for the three remaining variables (θ , ξ , and η) is obtained
by taking the average of the right hand side over [0, 2π

ω ]. The averaged states are denoted by the superscript (·)a.
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The averaged system reads [16] :

d
dt

⎡⎢⎣ θ̃ a

ξ a

η̃a

⎤⎥⎦ =

⎡⎢⎣ kξ a

−ωlξ a + ωlω
2π a

∫ 2π
ω

0 ν(θ̃)sin(ωt)dt

−ωhη̃a + ωhω
2π

∫ 2π
ω

0 ν(θ̃)dt

⎤⎥⎦ (6)

where θ̃ = θ̃ a +asin(ωt). The convergence is shown in [19] by considering the following steps. The exponential

stability of the equilibrium point of the above averaged system (θ̃ a, ξ a, and η̃a) is first proved. Then the expo-
nentially stability of (θ , ξ , and η) (non-averaged) is established using the averaging theorem [16]. Finally this
non-averaged system (θ , ξ , and η) acts as the “slow" manifold, while the original system :

ẋ = F(x,θ) (7)

acts as the boundary layer system which is assumed to be exponentially stable. Then, singular perturbation argu-
ments are considered to show that their interconnection is also exponentially stable [16]. The equilibrium of the
averaged system (6) corresponds to :

ξ a = 0,
∫ 2π

ω

0
ν(θ̃)sin(ωt)dt = 0, η̃a =

ω
2π

∫ 2π
ω

0
ν(θ̃)dt (8)

The value of θ̃ a is obtained from the second condition :∫ 2π
ω

0
ν(θ̃ a +asin(ωt))sin(ωt)dt = 0 (9)

This equation can be analyzed to provide the characteristics of the equilibrium point as summarized in the following
result from [19].

Proposition [19] The equilibrium of the averaged model (6) is a function of the amplitude of the excitation signal :

θ̃ a = − ν ′′′
(0)

8ν ′′(0)
a2 +O(a4) (10)

2.2 Further analysis of the basic scheme

As already pointed out, perturbation-based extremum-seeking control has been an active research area. We shall
concentrate on some specific results that further analyze the performance of this type of extremum-seeking ap-
proach. In this section, different results emphasized in [4] are now reported, starting with the dependence of the
zero-correlation point on the frequency of the excitation signal.

2.2.1 Dependence of the solution on the perturbation frequency

In the analysis presented in Section 2.1, it was assumed that x and y are at steady state, i.e. the relationship ỹ = ν(θ̃)
is considered algebraic, yet the relationship is indeed dynamic, ỹ = P(θ̃), with P being a dynamic operator. The
main result is that since the operator is dynamic, it changes the equilibrium point. More specifically the constant

value θ̃ a and the sinusoidal excitation a sin(ωt) have the same gain, i.e. the gain is independent of the frequency
of excitation. This, however, is true only if the system dynamics are neglected. If one accounts for the variation
of the gain of the system with the frequency, a dynamic relationship ỹ = P(θ̃) will be assumed instead of a static
relationship ỹ = ν(θ̃). The averaged system (6) then becomes :

d
dt

⎡⎢⎣ θ̃ a

ξ a

η̃a

⎤⎥⎦ =

⎡⎢⎣ kξ a

−ωlξ a + ωlω
2π a

∫ 2π
ω

0 P(θ̃)sin(ωt)dt

−ωhη̃a + ωhω
2π

∫ 2π
ω

0 P(θ̃)dt

⎤⎥⎦ (11)

It is shown in [4] that for a general nonlinear system the difference between the optimum and the zero-correlation
point is proportional to the square of the frequency.

Theorem 1 The equilibrium of the averaged model given by (11) is a function of the amplitude and the frequency
of the excitation signal :

θ̃ a = αa2 +βω2 + γa2ω +δω3 +O([ω a]4) (12)

where α , β , γ , and δ are constants that could be computed from the Taylor series development of the dynamic
operator P. Also, O([ω a]4) is used to represent O([ω a]4) = O(a4)+O(ω4)+O(ω2a2)+O(ωa3)+O(aω3).
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Proof : see [4].

The most important consequence of Theorem 1 is that even if a → 0, the zero-correlation point does not go to the
optimum, the error being a function of ω2:

lim
a→0

θ̃ a = βω2 +δω3 +O(ω4) (13)

Comparing the current result in [19], the key difference is the presence of terms of the type O(ω2). This means
that when too high a dither frequency is used, and even if a phase compensation is added such that the evolution
is stable, the solution may not necessarily converge to the optimum value. However if the phase compensation is
perfect, then the error goes to zero.

2.2.2 Wiener and Hammerstein models

Wiener or Hammerstein models are widely used to represent nonlinear dynamic systems [35]. Such models have
linear dynamics and a static nonlinearity. The difference between Wiener and Hammerstein models come from
the order in which the linear and nonlinear blocks are placed. The Wiener model consists of a static nonlinearity
followed by a linear dynamics while it is the reverse in the Hammerstein model. The interesting aspect of these
models is that, at the optimum, the gain of the static part, denoted G11, that multiplies the linear dynamics, is zero
for all frequencies. When this fact is used in Theorem 1, it can be seen that the coefficients of ω2 and ω3, i.e. β
and δ are both equal to zero. It can then be shown that when G11 = 0 for all frequencies, all terms independent of
a in θ̃ a, i.e. ω4, ω5, etc.,. are all zeros.

Theorem 2 If the nonlinear dynamic system (7) is represented by a Wiener or a Hammerstein model, then the
equilibrium of (11) is given by :

θ̃ a = αa2 + γa2ω +O(a2ω2)+O(a4) (14)

Proof : see [4].

The consequence of this result is that for a Wiener or a Hammerstein model the distance between the zero-
correlation point and the optimum goes to zero as a → 0, i.e. :

lim
a→0

θ̃ a = 0 (15)

Note that the error is also proportional to O(a2) due to the absence of terms of the type O(aω). However even
for a Wiener or Hammerstein representation, for a �= 0, the equilibrium point will indeed be affected by the fre-
quency. Another interesting result can be stated when the static nonlinearity of a Wiener or Hammerstein model is
symmetric around the optimum.

Figure 2: Approximation of a general nonlinear system using two parallel Hammerstein models

Lemma 1 Let the system (7) be represented by a Wiener or a Hammerstein model wherein the static nonlinearity
is an even function of θ̃ . Then θ̃ a = 0 is an the equilibrium of (11).

Proof: see [4].

This result states that the error comes from the asymmetry of the static nonlinearity. Note however that nothing
much can be said if the nonlinearity cannot be represented by a Wiener or Hammerstein model. This means that
from an optimization perspective, certain nonlinear systems behave differently from their Wiener/ Hammerstein
approximations. At the steady-state optimum, the gain is zero for all frequencies with Wiener or Hammerstein
approximation. However at the steady-state optimum of a nonlinear dynamic system, though the static gain is
zero, the gain at other frequencies is typically non-zero. This aspect can be captured by representing a nonlinear
dynamic system as a sum of two Wiener or Hammerstein models (Figure 2). The first branch has a zero gain at the
static optimum while the second has nonzero gain.
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2.2.3 Illustrative Example

An isothermal reaction system in a plug flow reactor with distributed feed [5] and the following reaction scheme
A → B → C, 2A → D is considered to illustrate the dependence of the zero-correlation point with frequency. Its
dynamics are given by the following set of PDE’s :

∂CA

∂ t
= − v

S
∂CA

∂ z
− CA

S
∂v
∂ z

+
q
S

Cdist
Ain − k1CA −2k3C2

A (16)

∂CB

∂ t
= − v

S
∂CB

∂ z
− CB

S
∂v
∂ z

+ k1CA − k2CB (17)

∂v
∂ z

= q (18)

CA(z,0) = CA0,CB(z,0) = CB0, CA(0, t) = CAin,CB(0, t) = CBin (19)

with CX , q, ki, CAin, Cdist
Ain , S, L the concentration of species X , the volumetric flowrate per unit length, the rate

constants, the inlet concentration, the distributed feed concentration; the volumetric flowrate, the reactor section,
and the reactor length, respectively. The objective is to maximize the concentration of product B at the reactor
output, CB(L), and the manipulated variable is q. The parameter values are equal to :

k1 = 5.6530h−1,k2 = 5.6530h−1,k3 = 140.2601lmol−1 h−1

CAin = 1mol l−1,Cdist
Ain = 10mol l−1,v = 1m3 h−1,L = 1m (20)

Table 2.1: Influence excitation frequency on the equilibrium value

Excitation kopt τh τl Equilibrium

frequency[h−1] [h] [h] [h−1]

0.0100 0.0100 1000 1000 2.1024
0.0464 0.0464 215.50 215.50 2.0911
0.1292 0.1292 77.40 77.40 2.0821
0.5995 0.5995 16.70 16.70 1.8712
1.0000 1.0000 10.00 10.00 1.5115

The system under study is linearized at three operating points, q = qopt , qopt + 0.5, qopt − 0.5. The pole-zero
maps of the three operating points tell us most of the poles are zeros do not change the position except one zero
near the origin. The system shifts from minimum phase to non-minimum phase while it behaves as a filtered
differentiator at the optimum. So this system cannot be represented by Wiener or Hammerstein models and has to
be approximated locally by two parallel branches (Figure 2).

As summarized in Table 2.1 and Figure 3, several excitation signal frequencies are used and the converged zero-
correlation points obtained by simulation of the nonlinear model given by (16)-(19) are compared to the static
optimum dilution rate 2.1006 h−1. Note that initial conditions are chosen to be in the local stability region [19].
If the initial conditions are chosen in this region, the equilibrium point is independent of the initial condition. It
is interesting to note that the error is small until a certain cutoff frequency, and increases drastically when the
frequency is larger than this value.

3 Model-based extremum-seeking control
3.1 General problem, basic model and assumptions

An alternative to the perturbation-based extremum seeking control consists of considering explicitly a dynamical
model of the system with unknown parameters, and to combine optimum search and adaptive control to guar-
antee converge of the closed-loop system to the optimum operating points. Such an approach has been largely
developed in a number of papers dedicated to the real-time optimization of bioprocesses [10][22][23][30][31][38],
chemical reactors [5][11][13][14], pulp and paper processes [7] and biomedical systems [12]. In order to keep the
presentation as simple as possible, we shall consider in the present paper a simple example of a bioreactor with
two different options. In the first instance, the kinetics model structure is assumed to be known while its param-
eters are unknown [38]. In the second instance, the kinetics model is assumed to be unknown and an universal
approximation is considered to update the model kinetics and drive the system to its optimum [10].

Consider the following microbial growth model :

ẋ = μ(x,s)x−ux (21)

ṡ = −k1μ(x,s)x+u(s0 − s) (22)

y = k2μ(x,s)x (23)
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Figure 3: Evolution of the solution as a function of the excitation signal frequency

where states x ∈ [0,+∞) and s ∈ [0,+∞) denote biomass and substrate concentrations, respectively, u ≥ 0 is the
dilution rate, y is the production rate of the reaction product, s0 denotes the concentration of the substrate in the
feed, and k1,k2 > 0 are yield coefficients.

The nonlinear function μ(s) denotes the growth rate of the process. System (21)(22) can represent a large class
of biochemical processes depending on the choice of the growth rate μ(x,s). There are many different models for
μ(x,s) proposed in the literature [2], for example:

μ(x,s) = μ(s) =
μms

Ks + s
(Monod) (24)

μ(x,s) =
μms

Kcx+ s
(Contois) (25)

μ(x,s) =
μmK0s

1+K1s+K2s2
(Haldane) (26)

where μm > 0 is the maximum value of the specific growth rate, and positive constant Ks, Kc and K0 to K2 denote
the coefficients for different growth rate models.

3.2 Case #1 : the specific growth rate model structure is known

Let us first consider that the specific growth rate model structure μ is known and follows (for instance) Monod
kinetics (24). Let us also considerthat only s and y are measurable, and that the biomass concentration x is not
available for measurement. However the scheme developed in this paper is not limited to this model and can be
easily extended to the plants with other growth rate representations. The control objective is to design a controller
u such that the production rate y achieves its maximum.

We first calculate the system’s equilibria corresponding to a constant dilution rate ue. By setting the right-hand
side of (21)(22) to zero, we obtain two equilibria. The first is xe = 0 and se = s0 which is called the wash-out
equilibrium. The second is :

se =
Ksue

μm −ue
, xe =

s0 − se

k1

At the steady-state, the production rate can be expressed by :

ye(se) =
k2μmse(s0 − se)

k1(Ks + se)
(27)
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From (22) and (24), we have :

∂ye(se)
∂ se

=
−k2μm

k1(Ks + se)2

(
s2

e +2Ksse − s0Ks

)
(28)

∂ 2ye(se)
∂ s2

e
=

−2k2μm

k1(Ks + se)3

(
K2

s + s0Ks

)
(29)

It is shown that
∂ 2ye(se)

∂ s2
e

> 0,∀se ≥ 0. Hence at the equilibrium, ye(s) has a maximum :

y∗ = ye(s∗) =
k2μms∗x∗

Ks + s∗
(30)

with :

s∗ =
√

K2
s + s0Ks −Ks, x∗ =

s0 − s∗

k1
. (31)

From the above analysis, we know that if the substrate concentration s can be stabilized at the set-point s∗ then
the production rate y is maximized. However, since the exact values of the Monod’s model parameters Ks and μm
are usually unknown, the desired set-point s∗ is not available. An adaptive extremum seeking algorithm is now
presented to search this unknown set-point such that the production rate y is optimized.

Assumption 1 The upper bound of Ks is known, i.e. Ks ≤ Ks0 with known constant Ks0 > 0.

Let us define θ = [θs θμ θk]T with :

θμ =
μm

Ks
, θs =

1

Ks
, θk =

k1

k2
(32)

The mass balance equation for s (22) and the dynamical equation of y that can be deduced from the basic model
(21)-(23) can be written as follows :

ṡ = −θky+u(s0 − s) (33)

ẏ = −uy+
θμ s2y−θky2 +(s0 − s)uy

s(1+θss)
(34)

Let θ̂ , ŝ and ŷ denote the estimates of θ , s and y, respectively, and consider the following observer-based estimation
scheme :

˙̂s = −θ̂ky+u(s0 − s)+ kses (35)

˙̂y = −uy+
θ̂μ s2y− θ̂ky2 +(s0 − s)uy

s(1+ θ̂ss)
+ kyey (36)

˙̂θs =

⎧⎪⎪⎨⎪⎪⎩
γsφsyey

1+ θ̂ss
, if θ̂s > 1/Ks0

or θ̂s = 1/Ks0 and φsyey ≥ 0
0, otherwise

(37)

˙̂θμ = γμ syey (38)

˙̂θk = −γky
(y

s
ey + zs + es

)
(39)

with ks,ky,γμ ,γs,γk > 0, the prediction errors es = s− ŝ and ey = y− ŷ, and the initial condition θ̂s(0)≥ 1/Ks0 > 0.

Let us then define the variable zs :

zs = s− 1

θ̂s

(√
1+ s0θ̂s −1

)
+d(t) (40)

where d(t) ∈ C1 is an excitation signal to be assigned. Let us now consider the following extremum seeking
controller :

u = −γsβa(y,s, θ̂s)ey + ḋ(t)− θ̂ky+ kzzs

[1+ γsβb(y,s, θ̂s)ey](s0 − s)
, kz > 0 (41)
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with :

βa(y,s, θ̂s) =

⎧⎪⎨⎪⎩
(−θ̂μ s2+θ̂ky)y

1+θ̂ss
β (θ̂s), if θ̂s > 1/Ks0

or θ̂s = 1/Ks0 and φsyey ≥ 0
0, otherwise

(42)

βb(y,s, θ̂s) =

⎧⎨⎩
− y

1+θ̂ss
β (θ̂s), if θ̂s > 1/Ks0

or θ̂s = 1/Ks0 and φsyey ≥ 0
0, otherwise

(43)

Let us further assume that the gain function ky is equal to :

ky = ky0 +
(s0 − s)Ks0|u|
2(1+Ks0s)

, ky0 > 0 (44)

and that in order to avoid the singularity that may happen to the controller (41) when 1+γsβb(y,s, θ̂s)ey approaches
zero, a small learning gain γs should be used such that :

1+ γsβb(y,s, θ̂s)ey > 0 (45)

Let us also assume that the dither signal d(t) is designed such that the following condition holds :

lim
t→∞

1

T0

∫ t+T0

t
Φa(s,y, θ̂)ΦT

a (s,y, θ̂)y2dτ ≥ c0I, c0 > 0 (46)

Theorem 3 For the system (21)-(23) if the learning rate γs is chosen small enough such that (45) holds, and if
the dither signal d(t) satisfies the PE condition (46), then the extremum seeking controller (41) with adaptive laws
(35)-(39) guarantees that the production rate y converges to an adjustable neighborhood of its maximum y∗ :

lim
t→∞y = y∗ + k2μ(s∗)ε(d, ḋ)− lim

t→∞

[
k2d(t)

∫ 1

0

∂ μ(sλ )
∂ sλ

dλ
]

(47)

with :

ε(d, ḋ) =
d(t)
k1

+
ḋ(t)

k1μ(s)
(48)

Proof: see [38]. The proof is based on the following Lyapunov function :

V =
z2

s

2
+

1

2

( θ̃ 2
μ

γμ
+

θ̃ 2
s

γs
+

θ̃ 2
k

γk

)
+

e2
s

2
+(1+θss)

e2
y

2
(49)

and considers LaSalle-Yoshizawa’s Theorem, LaSalle Invariance Principle and Barbalat’s Lemma (see e.g. [15][17]).

To show the effectiveness of the proposed design, simulations have been performed using the experimental condi-
tions provided in [34] with the following parameters and initial states :

Ks = 0.2, μm = 1.0, Y = 0.5, k1 = 2.0, k2 = 1.0, s0 = 10.0, x(0) = 3.0, s(0) = 0.9

The upper bound of Ks is assumed to be known : Ks0 = 0.5. The design parameters are set to :

γs = 2.0, γμ = 20.0, γk = 2.0, θ̂s(0) = 8.0, θ̂μ(0) = 2.0, θ̂k(0) = 4.0

The dither signal is chosen as d(t) = 2.2−cos(0.5t)−cos(0.3t). It is shown from Figure 4 that the production rate
reaches its maximum value 3.77 after t = 6. Due to the injection of the excitation signal d(t), the production rate
keeps oscillating around the optimal point. Figure 5 plots the control input. The convergence of the algorithm can
be confirmed by inspection of a simulation performed over a longer time period (i.e. t = 800). In order to remove
the effect of the excitation signal d(t), we let d(t) vanish exponentially as t > 600. The production rate is shown
in Figure 6. The simulation confirm that the production rate converges to its maximum
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Figure 4: Production rate y (“—") and its maximum y∗ (“- -")

Figure 5: Control input u(t)
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Figure 6: Production rate y (“—") and its maximum y∗ (“- -")

3.2.1 Case#2 : the specific growth rate model structure is unknown

Let us consider the case when the structure of the specific growth rate μ(s,x) is unknown. In the present instance,
in order to emphasize the flexibility of the approach, we consider that s and x are measurable while y is not. Let us
choose to parameterize the unknown function μ(s) via some universal approximation (e.g. a neural network) as :

μ(s(t)) = W ∗T
S(s(t))+ μl(t) (50)

with μl(t) the approximation and S(s(t)) the basis function vector :

S(s) = [s1(s),s2(s), ...,sl(s)]T , si(s) = exp

[−(s−ϕi)T (s−ϕi)
σ2

i

]
, i = 1,2, ..., l (51)

The parameters of the basis function approximation (50) are assumed to take values in a known compact set Ωw.
The functional approximation of the equilibrium manifold is dependent on the center of the receptive field, ϕi, and
the width of the Gaussian function σi. Universal approximation results stated in [26][27] indicate that if l is chosen

sufficiently large, then W ∗T
S(s) can approximate any continuous function to any desired accuracy on a compact

set. For the Neural Network approximation, we assume that the following holds.

Assumption 2 The Neural Network approximation errors satisfies |μl(t)| ≤ μ̄l with constant μ̄l > 0 over a com-
pact set.

In this case, Assumption 1 makes sense. The physical nature of the problem is such that the growth rate μ(s) is
inherently bounded. Since the approximation W ∗T S(s) is bounded by construction, an upper bound on approxima-
tion error can be obtained easily. In the remainder, we will assume that this upper bound is known.

Following (50), the steady-state production rate is approximated by :

ye =
k2

k1
W ∗T S(se)(s0 − se) (52)

From (52) we have :
∂ye

∂ se
=

k2

k1
W ∗T

(
dS(se)(s0 − se)−S(se)

)
(53)

and
∂ 2ye

∂ s2
e

=
k2

k1
W ∗T

(
d2S(se)(s0 − se)−2dS(se)

)
(54)
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Assuming that the parameter vector W ∗ is such that ∂ 2ye
∂ s2

e
> 0,∀se ≥ 0, then ye(s) has a maximum at the system

equilibrium :

y∗ = ye(s∗) =
k2

k1
W ∗T S(s∗)x∗ (55)

with :

x∗ =
s0 − s∗

k1
(56)

The objective is to develop a controller that maximizes the steady-state value of the production rate y∗. However,
since the exact values of the ideal weights, W ∗, are not known a priori, they have to be estimated. The estimation
scheme is based on the mass balance equations (21)(22) that can be re-expressed as follows :

ẋ = (W ∗T S(s)+ μl(t))x−ux (57)

ṡ = −k1(W ∗T S(s)+ μl(t))x+u(s0 − s) (58)

Let Ŵ denote the estimate of the true parameter W ∗ (W̃ = W ∗ −Ŵ ) and let ŝ and x̂ be the predictions of s and y.
The estimation scheme is written as follows :

˙̂x = Ŵ T Sx−ux+ kxex + c1(t)T ˙̂W (59)

˙̂s = −k1Ŵ T Sx+u(s0 − s)+ kses + c2(t)T ˙̂W (60)

ċT
1 = −kxcT

1 + xST (61)

ċT
1 = −kscT

2 − k1xST (62)

ċT
3 = −kzcT

3 − k1xŴ TΓ2ST (63)

˙̃W = −γwϒ(t)Tϒ(t)W̃ − γwϒ(t)T η

+

⎧⎨⎩ 0

{
if q(Ŵ ) ≤ wm or

if q(Ŵ ) ≥ wm and γŴ Tϒ(t)T e ≤ 0

γwγ2q(Ŵ )ŴŴ T

Ŵ T Ŵ

(
ϒ(t)Tϒ(t)W̃ +ϒ(t)T η

)
otherwise

(64)

with the prediction errors es = s− ŝ and ex = x− x̂, ηT = [η1,η2,η3] :

η1 = ex − c1(t)TW̃ , η2 = es − c2(t)TW̃ , η3 = zs − c3(t)TW̃ (65)

the gain functions ks,ky,kz > 0 :

kx = kx0 +
k4

2
x2, ks = ks0 +

k3k5

2
x2, kz = kz0 +

k3k6

2
x2(Ŵ TΓ2)2 (66)

where kx0, ks0, kz0, k4, k5 and k6 are positive constants. The matrix ϒ(t) and the function q(Ŵ ) are equal to :

ϒ(t)T = [c1(t)c2(t)c3(t)] , q(Ŵ ) = (M(Ŵ )−w2
m)/ε2 +wmε (67)

where wm > 0 and ε > 0 are positive constants.

Since the parameter vector W ∗ is unknown, the controller is designed to make the system state variables track
points where the estimated gradient :

z =
k2

k1
Ŵ T

(
dS(s)(s0 − s)−S(s)

)
(68)

vanishes. In order to ensure that the estimated gradient approaches the true gradient asymptotically, we have to
ensure that the parameter estimates approach the optimal weight vector W ∗. To achieve this objective, an excitation
signal is designed and injected into the adaptive system to ensure convergence of the estimated parameters to their
true value.

Let us define :

zs = Ŵ T
(

dS(s)(s0 − s)−S(s)
)
−d(t) (69)

where k2
k1

> 0 has been removed for simplicity and d(t)∈C1 is a dither signal that follows the following dynamics :

ḋ(t) = c3(t)T ˙̂W +ΓT
1

˙̂W − kdd(t)+Ŵ TΓ2a(t) (70)

where a(t) is an external signal providing excitation to the process and kd > 0 is a positive gain function to be
assigned.
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The adaptive extremum seeking controller is then given by the following expression :

u =

(
k1Ŵ T Sx+a(t)− kd

Ŵ TΓ2
d(t)− kz

Ŵ TΓ2
zs

)
(s0 − s)

(71)

Theorem 4 For the system (21)(23) with the observer-based estimator (59)-(63), the controller (71), the dither
signal (70) and the adaptive learning law (64), if that the signal a(t) is such that :∫ t+T

t
ϒ(τ)Tϒ(τ)dτ ≥ kNIN (72)

for positive constants T > 0 and kN > 0, then
1) the error dynamics converge exponentially to a small neighborhood of the origin;
2) the parameter estimation errors W̃ converge exponentially to a small neighborhood of the origin;
3) the tracking error from the unknown steady-state zs converges exponentially to a small neighborhood of the
origin.

Proof: see [10]. The proof is based on the following Lyapunov function :

V =
1

2
ηT η (73)

Figure 7: Production rate y (“—") and its maximum y∗ (“- -")

Simulation results are shown in Figures 7 and ??. We have considered here a bioreactor with the following growth
kinetics :

μ(s) =
μm1s

Ks1 + s+KI1s2
+

μm2s
Ks2 + s

This model represents the growth of one biomass from one substrate via two parallel reaction pathways, one
characterized by Haldane kinetics (and therefore possibly inhibited at high substrate concentration values) and the
other characterized by Monod kinetics (with growth saturation at high substrate concentrations). The following
parameter and initial values and design parameters’ values have been considered :

Ks1 = 0.2, μm1 = 1.0, Y = 0.5, k1 = 2.0, k2 = 1.0, KI1 = 0.1, s0 = 10.0

Ks2 = 0.3, μm2 = 2.0, x(0) = 0.1, s(0) = 1, x̂(0) = 0.1, ŝ(0) = 0.1

γw = 10.0, kd = kz0 = kx0 = ks0 = k4 = k5 = k6 = 1
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Figure 8: Control input u(t)

The NN radial basis function approximation consists of 5 terms with centers ϕi = 1 + 10(i−1)/4 and σi = 1 for
1 ≤ i ≤ 5. The initial conditions for the adaptive learning weights are Ŵi(0) = 0.1,1 ≤ i ≤ 5. The dither signal was
set to :

a(t) =
10

∑
i=1

ωi (A1isin(ωit)+A2icos(ωit))

where A1i and A2i are chosen as random numbers taken from a unit normal distribution. The frequencies are chosen
as ωi = 1+(i−1)10/9, i = 1, . . . ,10, and d(0) = ϒ(0) = 0.
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4 Conclusions
The objective of this paper was to present a survey on extremum seeking control methods and their applications
to process and reaction systems. Two important classes of extremum seeking control approaches have been con-
sidered : perturbation-based and model-based methods. For the latter, two options have been considered : with
full model structure knowledge and with partial model structure knowledge. Theoretical stability and convergence
results have been presented and simulations illutrate the performance of the approaches.
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