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Abstract. Intracellular dynamics and accumulation of nutrients is an ongoing challenge in plant 
cells cultures, as it has been shown to affect secondary metabolites productivity and culture repro-
ducibility. Using a kinetic model of plant metabolic pathways, it is observed that the stabilization 
of intracellular nutritional dynamics is desirable to increase culture productivity. This observation 
was used as a rationale to develop a perfusion feed profile for a bioreactor culture. Using mass 
balances and model-based estimation, it is possible to design a culture strategy to achieve the de-
sired intracellular stabilization by feeding nutrients proportionally to global cell consumption rate. 
The development and implementation of this strategy is presented and discussed. The method pre-
sented here offers many advantages for the development of control applications for intracellular 
processes, as it only requires a reliable estimation of biomass and key nutrients consumption rates. 
As seen with plant cells cultures, the circumventing of intracellular dynamics will allow exploring 
new possibilities in bioprocess engineering. 
 

1 Introduction 
Plant secondary metabolism has been used for decades as a way of producing high value molecules such as dyes, 
pigments, antibacterial agents and anti-cancer drugs. The production of these molecules in a controlled environ-
ment is extremely important, especially if the product is used therapeutically. Achieving controlled conditions in 
bioprocesses is not a problem for basic variables such as pH, temperature and dissolved oxygen. Proper control 
of extracellular substrates concentrations is discussed in [1]. However in plant cultures, the control of extracellu-
lar states is not sufficient to ensure a proper operation, as the cells can accumulate significant intracellular nutri-
ents reserves, which in turn affect productivity [2]. Thus, adequate feeding of medium is a critical problem in 
plant cells cultures [3]. To that end, a precise quantification of the system dynamics is required, as contradictory 
effects are reported when modulating plant cells cultures medium [2].  

We propose here that a dynamic metabolic model [4-6] can be used to develop a feeding strategy for a perfusion 
bioreactor culture that will stabilize intracellular concentrations and thus allow a better control of the process and 
an increase in culture productivity. The theoretical aspects of manipulating intracellular variables by using ex-
tracellular states was explored in [7], however no implementation on a specific cellular system was performed. 

 

2 Metabolic modelling 
The dynamic metabolic model used in this study is based on previous work [4-6]. An overview of the model is 
presented in Figure 1, with a brief description of the approach in Section 7.1 and nomenclature in Section 7.2. 
Further details on model construction and calibration with experimental data can be found elsewhere [4-6]. As 
was seen in previously, this model can describe the major nutritional dynamics (extracellular and intracellular) of 
plant and hairy roots cultures. The cell line used in this study is the California poppy (Eschscholtzia californica) 
with the key products being a variety of alkaloids compounds (ALK in Figure 1).  
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Figure 1. Dynamic metabolic model for plant cells – transport and storage of nutrients (EGLC, ENO3, ENH4, 
EPi) are shown in ‘a’ – central primary metabolism pathways are shown in ‘b’ – detailed nomenclature of the 

model’s variable is provided in Section 7.2. 

 

3 Perfusion bioreactor cultures to improve plant cells bioprocesses 
Since plant cells usually have low growth rates (μ ¬ d-1) and non-growth associated production of alkaloids, 
bioprocess design is critical. As was seen in a simulation study [8] the availability of carbon substrates (here 
glucose) at the intracellular level is critical to maintain the cells in favourable conditions for secondary metabo-
lites production, an observation that is also supported by experimental results [2]. Thus, a feeding strategy for a 
bioreactor culture should aim at maintaining intracellular glucose concentration in order to stabilize cells in a 
productive state. However, this must be achieved in stationary phase, as it is the production phase for secondary 
metabolites.  

The feeding of nutrients can be achieved in chemostat, fed-batch or perfusion culture. A chemostat would re-
quire continuous growth, which is not suitable for secondary metabolites production. A fed-batch operation 
would also dilute the biomass during the production (non-growth) phase. Thus, the perfusion culture seems to be 
the most appropriate design, given the constraints imposed by the slow growth and non-growth associated pro-
duction. A lab-scale 3L perfusion bioreactor for plant cells was previously developed in our group and it will be 
used here to implement a culture strategy based on these premises. Further details on the culture system can be 
found in [9]. The perfusion process for a generic metabolic system is shown in Figure 2, with further details for 
the mass balances in Section 7.1.  

 

3.1 Developing a feeding profile for a perfusion culture 
From the metabolic system (Figure 1) and the culture system (Figure 2) it is possible to derive the feeding profile 
that will stabilize the intracellular glucose reserves. This can be achieved by feeding glucose proportionally to 
overall consumption in the bioreactor. To that end the mass balances and nutrient rates estimation from the 
model will be used. Equations (1) and (2) show the mass balances on intracellular and extracellular glucose 
(GLC and EGLC, respectively). 

 

μ⋅−−= GLCtvtvdt
dGLC )(1)(31                                 (1) 
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Figure 2. Perfusion bioreactor – S and v represents the states and fluxes of the metabolic system (see Section 

7.1) – X is the biomass concentration and V is the volume – the manipulated variable is the liquid medium flow 
through the system F (feed rate in L·d-1) or D (dilution rate, d-1).    

 

( ) ( ) )()(31
)( tXtvEGLCinEGLCtD

dt
EGLCd ⋅−−⋅=             (2) 

Where v31 and v1 refer to reactions in Figure 1 (uptake and intracellular consumption of GLC), μ is the growth 
rate, D is the dilution rate (in d-1), EGLCin is the feeding concentration for glucose and X is the biomass concen-
tration in the bioreactor (in gDW·L-1). Assuming a steady-state on EGLC (which would eventually be reached if 
the perfusion is to stabilize the system), it is possible to isolate v31 in (2) and replace it in (1). 

 

μ⋅−−
−⋅

= GLCtv
tX

EGLCinEGLCtDGLCd
dt

)(1)(
][)()(

           (3) 

Then again, assuming that a constant concentration must be achieved for GLC, it will be possible to define a feed 
profile (D(t)) from (3):  

 

][
)(])(1[

)(
EGLCinEGLC

tXGLCtv
tD

−
⋅⋅−

=
μ

              (4) 

Assuming that the term GLC·μ is negligible (as is the case in most metabolic systems [10]) and that a small 
residual EGLC would be present at high X, it is possible to simplify (4) to: 

 

 
inEGLC

tXtv
tD

)()(1)(
⋅

=                    (5) 

where the unknown parameters are the biomass concentration (X) and GLC consumption (v1), EGLCin being 
defined from the medium composition (here EGLCin = 160mM). Biomass concentration can be estimated by 
many techniques (turbidity, conductivity, O2 consumption) so only an estimate of v1 is required. From the model 
simulations (see Figure 3) it is observed that this reaction rate stabilizes at 2.5 mmol·gDW·d-1. This constant 
value will thus be used as an estimate for v1 in equation (5). This approach neglects the possible dynamics of 
glucose phosphorylation rate, but, as simulation results shows, this induces very little error on the overall process 
as, in the conditions of this study, this rate is relatively constant over a long period of time. However, quasi real-
time Metabolic Flux Analysis (MFA) [11] would eventually allow the proper on-line estimation of reaction rates 
on this system and provide further ways of improving the control of intracellular processes.      
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3.2 Implementing the culture strategy through model simulation 
Thus, a simulation of the metabolic model with the perfusion feed profile defined by (5) was implemented. In 
that simulation, cell growth is limited by feeding a medium without phosphate (EPi = 0). This allows a realistic 
simulation of the bioreactor system, as plant cells suspension can rarely be cultivated at densities higher than 20-
25 gDW·L-1. This is also in accordance with the literature on production media for plant cells, as these usually 
limit the cells in phosphate during the production phase [2]. 

 

Figure 3 shows simulations results obtained using the metabolic model and perfusion feed. As a comparison, a 
simulation with D(t) = 0 (dotted line) is also shown, which correspond to standard batch cultures usually per-
formed with plant cells.  

 

 
Figure 3 Simulation results. Full line is for a perfusion culture with feed rate defined by equation (5) and dotted 

(light grey) line is for a batch culture with D(t) = 0.  

 

First, it is observed that the feeding described by (5) does stabilize intracellular GLC concentration. As compari-
son, in a batch culture with these conditions, EGLC is depleted after 8 days and intracellular GLC concentration 
cannot be maintained. A ‘side-effect’ of the feeding is the stabilization of intracellular nitrogen reserves (nitrate: 
NO3; and ammonium: NH4), as the medium GLC and NO3-NH4 are present in balanced proportions. The ab-
sence of phosphate in the feeding medium limits the growth in the perfusion culture and thus a similar biomass 
profile is observed in both conditions (i.e. the same amount of phosphate is available for both cultures).  

The desired increase in productivity is achieved by this strategy, as can be seen from the alkaloids simulation 
results, where the simulation with stabilized intracellular GLC show a final product concentration 2.25 times 
higher than for a batch culture. The constant ALK production rate for the perfusion culture (Figure 3) shows that 
the metabolic system is stabilized in a productive state during the stationary phase. Thus, simulation results sug-
gest that the proposed perfusion strategy is a promising way of improving the alkaloids production by this cell 
culture.    
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4 Experimental implementation 
Experimental implementation of that feeding strategy was performed to evaluate the proposed approach,. A brief 
overview of the results for GLC and product concentration is given in Figure 4, with further description and 
results available in [6]. For practical reasons (cell death, product degradation etc.) the batch culture is usually 
harvested after 10-12 days and the perfusion culture was operated for a slightly longer time, with medium feed-
ing being stopped after 13 days for a total culture duration of 15 days.   

 

 
Figure 4 Experimental implementation of the culture strategy and comparison with simulation - batch results are 

presented on the left and perfusion results (not used for model calibration) are on the right – dots represent ex-
perimental data points and lines are simulation results.  

 

These results show that stabilization of intracellular states is confirmed experimentally, as GLC concentration 
showed very little variation between days 2 and 11 of culture with a concentration of 0.28±0.07 mmol·gDW-1. 
The increase in productivity that was observed from simulation is also confirmed experimentally, except for the 
last data point of the culture, where phenomena not considered in the model (product degradation and/or cell 
death) might be significant. Since the data points from the perfusion culture were not used for model calibration, 
the agreement between model simulation and experimental results in Figure 4 shows that the model has suffi-
cient predictive capacity to be used for bioprocess design.  

 

5 Conclusion 
A dynamic metabolic model was used to develop a feeding profile for a plant perfusion bioreactor culture. This 
feed profile, when implemented by simulation, allowed achieving a proper stabilization of key intracellular state 
(glucose concentration), which showed to be critical in improving cell productivity. 

First, the proposed approach shows that it is possible to manipulate the nutrients feeding rates in order to cir-
cumvent the intracellular ‘open-loop’ dynamics that might reduce the productivity in batch cultures. Further 
work on that should however consider the proper closed-loop control of intracellular processes, as the experi-
mental techniques are becoming mature enough to provide adequate on-line measurements.   

An experimental implementation also confirmed the soundness of the proposed perfusion bioprocess strategy. 
The stabilization of intracellular state was achieved, together with the predicted increase in productivity. The use 
of a dynamic model to analyze a cellular system and rationally design a culture strategy is thus proposed here as 
a way of achieving a better understanding and control of intracellular processes. This approach will eventually 
allow exploring new possibilities for bioprocesses development, as it will be possible to actually control critical 
intracellular events that lead to product formation.  
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Model simulation at the intracellular level to improve the production of biomolecules could also be pushed fur-
ther. Optimization techniques could be used with different objectives (yield, production rate, product concentra-
tion, harvest time etc.) depending on the specific cellular system. This is already performed with standard meth-
ods like MFA, but not in closed-loop [10], and most of these approaches are limited to steady-state operation, 
which is not always achieved, depending on the cell culture method. However, the idea of using dynamic models 
of intracellular events is being applied to bioprocess optimization [12] and will definitely be part of the tech-
niques for bioprocess improvement. Here we also suggest that not only dynamic modelling, but also closed-loop 
control of intracellular processes will be key for further improvements on bioprocesses. The example presented 
here for plant cells shows that the approach should definitely be considered.   
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7 Appendix: model description 

7.1 General modelling approach 
The model is based on previous work [4-6]. In this study, the model is implemented in a 3L perfusion bioreactor 
and specific mass balances are required to describe the system correctly. The model can be described as a set of 
ordinary differential equation (ODE): 
 

SvM
dt
dS ⋅−⋅= μ                                                                                                          (A-1) 

where S is a vector of the 41 metabolic species concentrations, M is the stoichiometric matrix of the metabolic 
system (built from the reactions of the model, as presented in [5]), v is the vector of the fluxes (reactions in Fig-
ure 1) and � is the growth rate (reaction 46 in Figure 1). For extracellular states, the mass balance is different; 
especially in the case a perfusion bioreactor is used. Conversion of extracellular concentrations (mM) to intracel-
lular concentrations (mmol·gDW-1) has to be performed. The effect of medium feeding must also be considered. 
In that case, the mass balance can be written as follows: 

)( einT
e SSD

V
Xv

dt
dS

−⋅+⋅=                                                                                  (A-2) 
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where Se is the extracellular states vector (EGLC, ENO3, EPi, ENH4), vT is the vector of transport fluxes (v31 to 
v34 in Figure 1), D is the dilution rate (d-1) and Sin is the vector of feeding concentrations for nutrients (defined 
from the medium composition). 

The flux vector v(t) is defined using biokinetics equations in the form of multiplicative Michaelis-Menten kinet-
ics:   

∏
+

⋅=
i iim

i
jj

ii

i

SK
Svv αα

α

,
max,                  (A-3) 

where j is the flux number (1 to 46 in Figure 1), i are the index of metabolites involved in reaction vj and higher 
order reactions can be accounted for by adjusting the i term. As an example, the transport of glucose (EGLC) 
from the medium to the intracellular pool (GLC), reaction 31, is described by the following equation:  

ATPK
ATP

EGLCK
EGLCvtv

ATPmEGLCm +
⋅

+
⋅=

,,
31max,31 )(            (A-4) 

Here, the intracellular ATP concentration is considered, as the co-transporter of an ion (Na+) is used to pump 
GLC against its gradient in cells (indirect active transport). The complete construction of these equations, pa-
rameter estimation routines and performance of the modelling approach is presented and discussed in references 
[4-6].  

7.2 Model states 

Intracellular states 
Name Description Name Description Units 
AA Amino Acids NO3 Nitrate mmol•gDW-1 
ACOA Acetyl-CoenzymeA O2 Oxygen “ 
ADP Adenosine Diphosphate OAA Oxaloacetate “ 
ALK Total alkaloids OP Organic Phosphates “ 
ATP Adenosine Triphosphate ORA Organic Acids “ 
CHO Chorismate OXO Oxoglutarate “ 
CO2 Carbon Dioxide PEP Phosphoenolpyruvate “ 
VPi Vacuolar Pi PPi Pyrophosphate “ 
CPi Cytoplasmic Pi PYR Pyruvate “ 
E4P Erythrose-4-Phosphate R5P Ribulose-5-Phosphate “ 
F6P Fructose-6-Phosphate STA Starch “ 
FRU Fructose STH Structural Hexoses “ 

G3P Glyceraldehyde-3- 
Phosphate SUC Sucrose “ 

G6P Glucose-6-Phosphate NAD Nicotinamide Adenine 
Dinucleotide (oxidised) “ 

GLC Glucose NADH Nicotinamide Adenine 
Dinucleotide (reduced) “ 

LIP Lipids NADP 
Nicotinamide Adenine 
Dinucleotide Phosphate (oxi-
dised) 

“ 

NH4 Ammonium NADPH 
Nicotinamide Adenine 
Dinucleotide Phosphate 
(reduced) 

“ 

Extracellular states 
Name Description Name Description Units 
EGLC Glucose  EPi Phosphate  mM 
ENH4 Ammonium  EO2 Oxygen  “ 
ENO3 Nitrate    “ 
Other states 
V Liquid medium volume   L 
X Biomass   gDW•Flask-1 
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