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Abstract. We analyze the geometry of the evolutionary and the polysymplectic approach in first order
Hamiltonian field theory. The main difference important for the application is beside a different bundle
construction the different Legendre transform as well as the analysis of the conserved quantities. These
theoretical investigations will be completed by the analysis of continuum mechanics in the presented
framework.

1 Introduction
The Hamiltonian formalism is well known describing phenomena which can be modeled by ordinary differential
equations. The main ingredients of the theory are a representation of the equations in an evolutionary first order
form and under some regularity assumptions the Legendre transform yields a connection with the well known
Lagrangian description. There exist several approaches that extend this Hamiltonian description to systems that are
described by partial differential equations, where the general question arises if the formulation as an evolutionary
description should be maintained. A description in evolutionary form requires to single out an evolution parameter,
for example the time and this leads to the introduction of the variational derivative with respect to the Hamiltonian.
This approach is well known in the literature, see for example [5] or [7] and references therein. Another possibility
to describe field theory is an approach going back to De Donder which is based on the conservation of the symmetry
with respect to all the independent variables, i.e. the time and the space, which leads to the introduction of so called
multimomenta and of course the Legendre transform differs from the case of the evolutionary approach. There
exists an extensive literature describing the polysymplectic or the multisymplectic formulation, see for example
[1, 2, 3]. This paper aims to give a geometric description of both of these approaches in a geometric fashion,
singling out the differences in the bundle construction and to show how this two approaches differ in the case of
first order field theory in mechanics. As an example we will treat continuum mechanics in great detail, where we
assume that a stored energy function exists.

2 Technical Preliminaries
This section includes the main notions of differential geometry and specifies the tensor notation which will be used
in this sequel. In this contribution we use the concept of bundles [1] and [6]. Given a bundle ρ : E → X we are
able to derive the first jet manifold J 1(E ), with coordinates (xi,yα ,yα

i ) and the first jet of a section σ : X → E

is written as j1(σ). The tangent bundle T (E ) possesses the induced coordinates (xi,yα , ẋi, ẏα) and the vertical
subbundle V (E ) is equipped with the coordinates (xi,yα , ẏα), whereas the cotangent bundle T ∗(E ) possesses the
induced coordinates (xi,yα , ẋi, ẏα ). The special vector field di = ∂i + yα

i ∂α ∈ T (E ), we omit the pullback bundle
structure here, that meets the relation

(
j1σ

)∗ di (g) = ∂i (g◦σ) with g ∈ C ∞(E ) and σ ∈X → E is called the first
order total derivative. A connection on the bundle E → X is regarded as the map Γ : E → J 1(E ) which can be
represented as

Γ = dxi ⊗ (∂i + Γα
i ∂α) , Γα

i ∈ C
∞(E ) . (1)

We us the standard notation for tensor bundles as well as for the exterior algebra concerning differential forms,
where the interested reader is referred to [1] for a detailed exposition. For the Lie derivative of a geometric object Δ
with respect to a vector field v we arrange the notation v(Δ) = Lv(Δ) . For a tensor field tαβ dxα ⊗dxβ we introduce
tαβ ∂α ⊗ ∂β , such that tαβ tρα = δ ρ

β is met, if it exists, with the Kronecker delta δ .

3 The polysymplectic Structure
The aim of this part is to describe the main concepts of the polysymplectic formalism for first order field theory.
Most of the material presented here can be found in [1, 3] but in the latter part of this section we will focus then on
the conserved quantities to give a connection to the evolutionary point of view. Let us consider the bundle E →X

possessing the coordinates (xi,yα) → (xi). In our application, continuum mechanics, the coordinates yα will be
denoted by qα and correspond to the spatial coordinates in the configuration manifold, whereas the independent
coordinates xi will be the spatial coordinates in the reference manifold X j as well as the time t0 = x0. Therefor we
have dim(X ) = n = s+ 1 and i = 0, . . . ,n. Let us consider the first jet bundle J 1(E ) → E , which is affine and a
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first order Lagrangian L
L : J

1(E ) →
n
∧T

∗(X ) (2)

L = L ω with L ∈C∞ (
J 1 (E )

)
together with

ω = dx0 ∧ . . .∧dxn , ωi = ∂i�ω .

The partial differential equations for a first order Lagrangian follow as

δα(L ) = 0 , δα = ∂α −di∂ i
α (3)

which is a well known result in variational calculus, see for example [1, 6, 5] and references therein. We do
not discuss boundary terms here in the Lagrangian context, but they follow in a geometric fashion by the usual
variational principle and the theorem of Stokes.

A possible choice for a Lepage equivalent for L is the Poincare Cartan form

HL = L ω + ∂ i
αL (dyα − yα

k dxk)∧ωi = ∂ i
αL dyα ∧ωi −

(
∂ i

αL yα
i −L

)
ω . (4)

Let us consider the Legendre bundle [1]

Π → E , Π =
n
∧T

∗ (X )⊗V
∗(E )⊗T (X )

with coordinates (xi,yα , pi
α) for Π which possesses the transitions functions

p̄ī
ᾱ = det(∂īφ̂

i)∂ᾱ ϕ̂α ∂iφ ī pi
α

with respect to a bundle morphism x̄ī = φ ī(x) and ȳᾱ = ϕᾱ(x,y). With the Legendre bundle at hand we are able to
construct the tangent valued Liouville form

Θ = −pi
α dyα ∧ω ⊗ ∂i (5)

which can be contracted by λ = dxi ⊗ (∂i + yα
i ∂α) and one obtains

λ�Θ = −yα
i pi

α ω + pi
αdyα ∧ωi . (6)

Based on (6) the Hamiltonian form associated to a Lagrangian can be constructed and reads as

HL = λ�Θ +L ω = pi
α dyα ∧ωi − (yα

i pi
α −L )ω = pi

αdyα ∧ωi −HLω (7)

which corresponds to the equation (4) by the Legendre map pi
α = ∂ i

αL .

The next step is to introduce the polysymplectic form Ω which is defined such that Ω�φ = −d(Θ�φ) is met with
φ ∈ T ∗(X ). We obtain

Ω�φ = φidpi
α ∧dyα ∧ω , Ω = dpi

α ∧dyα ∧ω ⊗ ∂i . (8)

The map HL yields a fibred morphism HL : J 1(E ) → ZE

ZE =
n−1
∧ T

∗ (X )⊗T
∗(E ) (9)

which is termed homogeneous Legendre bundle and possesses the coordinates (xi,yα , pi
α , p) with the additional

transition function
p̄ = det(∂īφ̂ i)(p− ∂iϕᾱ ∂ᾱ ϕ̂α pi

α) (10)

as well as the canonical form
Ξ = pω + pi

αdyα ∧ωi . (11)

This unique form can be characterized by the fact the Ξ�v�w = 0, v,w ∈ V (E ). The horizontal projection h0 :
dyα → yα

i dxi leads to
h0(Ξ) =

(
p + pi

αyα
i
)

ω (12)

and this expression shows that all affine maps J 1(E ) →
n
∧T ∗(X ) can be expressed in coordinates by (p, pi

α).
Let us choose a section of the bundle ZE → E with p = −H and this construction leads to the Hamiltonian form

H = pi
α dyα ∧ωi −H ω . (13)

and it is readily observed that in the case of a regular Legendre map (7) and (13) can be related by a given
Lagrangian L.
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3.1 The differential equations

To obtain the partial differential equations we consider the relation

γ�Ω = dH , γ = dxi ⊗
(

∂i + yα
i ∂α + p j

α i∂
α
j

)
(14)

where the first jet manifold of the Legendre bundle J ¹(Π) possesses the coordinates (xi,yα , pi
α ,yα

j , pi
α j) and from

γ�Ω =
(

dpl
α ∧dyα ∧ωl −dpl

αyα
l ∧ω + pl

α ldyα ∧ω
)

(15)

we end up with (
(yα

i − ∂ α
i H )dpi

α −
(

pl
α l + ∂αH

)
dyα

)
∧ω = 0 (16)

and the partial differential equations follow to

yα
i = ∂ α

i H , pi
α i = −∂αH . (17)

Let us denote by π̂ the inverse of the map pi
α = ∂ i

αL , i.e. yα
i = π̂α

i (xi,yα , pi
α) then from

∂ α
j (π̂β

i pi
β −L ◦ π̂) = (∂ α

j (π̂β
i )pi

β + π̂α
j − ∂ i

ρL ∂ α
j π̂ρ

i ) = π̂α
j

and
∂α(π̂β

i pi
β −L ◦ π̂) = (pi

β ∂α π̂β
i − ∂αL − ∂ i

ρL ∂α π̂ρ
i ) = −∂αL

together with (
∂α −di∂ i

α
)
L =

(
∂αL −dipi

α
)

= 0
it is shown that the equations (3) and (17) correspond in the case of a regular Legendre transformation.

Let us choose a nontrivial connection on E such that

Γ = dxi ⊗ (∂i + Γα
i ∂α) (18)

is met. Therefore one has the splitting

H = pi
α(dyα −Γα

j dx j)∧ωi −H ω = pi
α dyα ∧ωi − (pi

αΓα
i +H )ω

and the differential equations follow as

yα
i −Γα

i = ∂ α
i H , pi

α i + pi
β ∂α Γβ

i = −∂αH . (19)

3.2 The conserved quantities

Let us consider the projectable vector field w = wi∂i +wα ∂α where we denote its first jet-prolongation with j1(w).
The Lie derivative of the Lagrangian evaluated on solutions of (3) yields

( j1(w))(L) =
(
di

(
∂ i

αL (wjyα
j −wα)−L wi))ω (20)

see also [1], which can be written also as

( j1(w))(L) =
(

di

(
pi

α(wk∂ α
k H −wα)− (pk

α∂ α
k H −H )wi

))
ω . (21)

In the case of mechanics we split the coordinates xm, m = 0, . . . ,n into t0 and X j with the convention that the
indices j = 1 . . .n in contrast to the general case where the indices meet j = 0, . . . ,n, since we explicitly label the
coordinate x0 = t0. If the Lagrangian is independent of the time, i.e ∂0L = 0, where we assume a trivial connection
Γ, then we obtain with w0 = 1, wj = 0 and wα = 0 the relation

0 = ∂0L = d0

(
p0

α ∂ α
0 H − (p j

α∂ α
j H + p0

α∂ α
0 H −H )

)
and consequently

d0

(
−p j

α∂ α
j H +H

)
= 0

shows that the expression
H − p j

α∂ α
j H = p0

α yα
0 −L (22)

is the conserved quantity for this special case. We have shown that in the case where the Lagrangian is time-
independent the conserved quantity reads as

H = p0
αyα

0 −L

which corresponds to the total energy in many applications. It is worth mentioning that the Hamiltonian H and
the conserved H quantity differ in the expressions pi

αyα
i containing the spatial momenta Thus we are motivated

to construct a Hamiltonian formulation where the Hamiltonian equals the conserved quantity in the time invariant
case. This will be demonstrated in the following section.
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4 Hamiltonian Evolution Equations
A different view of Hamiltonian field theory is obtained when the equations are formulated with respect to the
evolution of time only. Let us denote the special Hamiltonian which contains only momenta with respect to the
time coordinate as

H = p0
αyα

0 −L (23)

then it is verified that the evolution equations can be written as

yα
0 = ∂ α

0 H , p0
α0 = −δαH . (24)

To show this let us denote by θ̂ the inverse of the map pα
0 = ∂ α

0 L , i.e. yα
0 = θ̂ α

0 (xi,yα , pα
0 ,yα

i ) then from

∂ α
0 (θ̂ β

0 p0
β −L ◦ θ̂) = (∂ α

0 (θ̂ β
0 )p0

β + θ̂ α
0 − ∂ 0

ρL ∂ α
0 θ̂ ρ

i ) = θ̂ α
0

and
∂α(θ̂ β

0 p0
β −L ◦ θ̂) = (p0

β ∂α θ̂ β
0 − ∂αL − ∂ 0

ρL ∂α θ̂ ρ
0 ) = −∂αL

as well as from
di∂ i

α(θ̂ β
0 p0

β −L ◦ θ̂) = di(p0
β ∂ i

α θ̂ β
0 − ∂ i

αL − ∂ 0
ρL ∂

i
α θ̂ ρ

0 ) = −di∂ i
αL

the equivalence is shown.

4.1 The geometric background

To explain the geometric motivation behind this approach let us consider a different bundle structure and we
consider U → D where in contrast to the last section the manifold D with dim(D) = s only consists of the spatial
variables which are denoted as Xi with i = 1, . . . ,s and the manifold U is equipped with the coordinates uα . The
volume form is now denoted by

Ω = dX1 ∧ . . .∧dXn , Ωi = ∂i�Ω

and in the Lagrangian picture we consider the bundle structure U →D with
(
Xi,yα , ẏα)

→ Xi where it is worth
mentioning that we have the identification ẏα = yα

0 and pα = p0
α when the flow parameter of the semi-group

corresponds to the time t0, but the bundle construction remains different of course. Let us consider a section
σ : D → U together with the total time change of the Hamiltonian functional, which is given as∫

D

(
j2σ

)∗ (
j1 (v)(HΩ)

)
=

∫
D

(
j2σ

)∗ (
j1 (v)�d (HΩ)

)
, (25)

for first order Hamiltonians, and we consider an evolutionary vertical vector field v : U → V (U ) together with
the first prolongation j1 (v) = vα ∂α + di(vα)∂ i

α . Let us inspect the expression

j1 (v)�d(HΩ) = (vα ∂αH+ di(vα)∂ i
αH)Ω

and integration by parts leads to

j1 (v)�d(HΩ) = (vα ∂αH− vαdi∂ i
αH)Ω+di(vα ∂ i

αH)Ω . (26)

Using the variational derivative δ and the horizontal derivative dh the equation can be rewritten as

j1 (v)�d(HΩ) = v�δαHduα ∧Ω + dh(v�∂ i

αHduα ∧Ωi) ,

where we have the coordinate expression

HΩ → δαHduα ∧Ω , δα = ∂α −di(∂ i
α ) .

It is easily seen that the total derivative d splits into the variational derivative δ and an exact form. Furthermore the
additional map δ ∂ can be introduced with

HΩ →δ ∂ (HΩ) , δ ∂ (HΩ) = ∂ i
αHduα ∧Ωi .

Therefore we can conclude that in first order mechanics we obtain

δ ∂ (HΩ) = ∂ i
αHdyα ∧Ωi = −pi

αdyα ∧Ωi

which shows that the spatial momenta also appear in the boundary map.
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5 Continuum Mechanics
In this part we want to discuss the Lagrangian description of continuum mechanics in an intrinsic form, see also
[8], by considering the formulations presented so far in this paper. We start with some geometric preliminaries
necessary for an intrinsic description of mechanics.

5.1 The geometry of Continuum Mechanics

The configuration bundle Q → B possesses the coordinates (t0,qα) → (t0) and the reference bundle R → B is
introduced with coordinates (t0,Xi) for R. We construct the bundle Ce → R, with

Ce= Q×BR (27)

and coordinates (t0,Xi,qα) for Ce. Furthermore, we introduce the following geometric objects. A symmetric
vertical metric g on the fibres of Q → B, a trivial reference frame γ = dt0 ⊗ ∂0 and a connection splitting the
vertical tangent bundle V (Q) → Q, which is denoted by Λ. In coordinates we obtain for the metric

g = gαβ dqα ⊗dqβ , gαβ ∈ C
∞(Q)

and for the connection
Λ = dt0 ⊗ ∂0 + dqα ⊗ (∂α + Λρ

α∂̇ρ) , Λρ
α ∈ C

∞(Q)

with ∂0gαβ = 0 and the volume form reads as

vol =
√∣∣det(gαβ )

∣∣dq1 ∧ ...∧dqn , gαβ ∈ C
∞(Q) .

On the reference bundle we have a metric on the fibres of R

G = Gi jdXi⊗dX j , Gi j ∈ C
∞(R)

as well as a volume form
VOL =

√∣∣det(Gi j)
∣∣Ω , Gi j ∈ C

∞(R) .

For Λ we choose a linear connection

2Λκ
αρ = −gκβ (

∂α gρβ + ∂ρgβ α − ∂β gαρ
)

and for simplicity we only discuss the case dim(Q) = dim(R).

A motion in the Lagrangian setting is a map Φ : R → C e with

qα = Φα (
t0,Xi)

and the tangent map of Φ : R → C e is given as T (Φ) : T (R) → T (Ce)

T (Φ) = dt0 ⊗ (∂0 +V α
0 ∂α)+ dXi⊗ (∂i + Fα

i ∂α) .

5.1.1 Stress forms

Let us consider the Cauchy stress form
σ = σαβ ∂α�vol⊗ ∂β (28)

together with the map Φ : R → C e that allows to pull back the form part of (28). This leads to the 1st Piola stress
tensor

P = Φ∗
(

σαβ ∂α�vol
)
⊗ ∂β = Piβ ∂i�VOL⊗ ∂β . (29)

The 2nd Piola stress tensor is given as

S = Φ∗
(

σαβ ∂α�vol⊗ ∂β

)
= Si j∂i�VOL⊗ ∂ j (30)

and the relation Si j = Piβ F̂ j
β is met. The Cauchy Green tensor is obtained by pulling back the metric g by the

map Φ : R → C e. Ci j = (gαβ ◦Φ)Fα
i Fβ

j . Therefore the following quantities are adopted which do not require the
knowledge of Φ. We have

P̆iβ ◦ j1Φ = Piβ , S̆i j ◦ j1Φ = Si j , C̆i j ◦ j1Φ = Ci j (31)

which means that P̆iβ , S̆i j,C̆i j ∈C∞(J 1 (Ce)). Then the relation Piβ = Si jFβ
j reads P̆iβ = S̆i jqβ

j .
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5.2 The Euler Lagrange Equations

We investigate only first order Lagrangians and the variational derivative for this setting looks in coordinates as

δα = ∂α −di∂ i
α −d0∂ 0

α

with
di = ∂i + qα

i ∂α , d0 = ∂0 + qα
0 ∂α .

Let us consider the density of the kinetic energy

Ekd = ρREkVOL∧dt0 , Ek =
1
2

qα
0 gαβ qβ

0 (32)

with the mass density ρR , together with the balance of mass ∂0ρR = 0, and the stored energy function which meets

2ρR

∂
∂C̆i j

Eel = S̆i j . (33)

We use the variational principle
δα(L )+ ρR

√∣∣det(Gi j)
∣∣gαρBρ = 0 ,

where the body force densitiy has been added, with

L =ρR

√∣∣det(Gi j)
∣∣(Ek −Eel) (34)

which consequently leads to

ρR

(
qη

00 −Λη
β σqβ

0 qσ
0

)
= dkP̆kη + P̆kηΛβ

kβ − P̆kτ Λη
τβ qβ

k + ρRBη . (35)

Using the spatial picture we obtain

ρR

(
∂0V ρ

0 −V α
0 V β

0 Λρ
αβ

)
= BρρR + ∂iPiρ −PiρΛr

ir −PiτΛρ
κτ Fκ

i , (36)

which are partial differential equations in the unknown functions Φα and we have V α
0 = ∂0Φα and Fα

i = ∂iΦα .

5.3 The polysymplectic point of View

Again we have coordinates for X which read as (x0 = t0,xi = Xi) and we choose the trivial connection

Γ = dt0 ⊗ ∂0 + dXi⊗ ∂i .

From the Lagrangian (34) we derive the spatial momenta

pi
α = −∂ i

α

(
ρREel

√∣∣det(Gi j)
∣∣) = −(

√∣∣det(Gi j)
∣∣S̆i jgατqτ

j ) .

as well as the temporal momenta

p0
α = ∂ 0

α

(
ρREk

√∣∣det(Gi j)
∣∣) = ρR

√∣∣det(Gi j)
∣∣gαβ qβ

0

and the Hamiltonian can be computed in the case where the second Piola stress tensor is invertible from the
expression

H = p0
α qα

0 + pi
αqα

i − (ρR

√∣∣det(Gi j)
∣∣(1

2
qα

0 gαβ qβ
0 −Eel

)
which gives

H =
1√∣∣det(Gi j)

∣∣
(

1
2ρR

p0
α p0

β gαβ − pi
α p j

ρ gρα S̆i j

)
+ ρR

√∣∣det(Gi j)
∣∣Eel .

It is important to remark that the case of a degenerate Lagrangian can be handled using advanced tools, which can
be found for example in [4] where it is shown that the problem of regularity can be treated using a more general
equivalence of Lagrangian and Hamiltonian Systems not necessary having the same order of the Lagrangians and
the associated Hamiltonians. A different approach where the authors introduce a Lagrangian constrained space
which is the image of the Legendre map and clearly a subset of Π, can be found in [1]. This problem of regularity
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will not be discussed he here and we proceed with the assumption of a non degenerate Lagrangian such that the
equations read as

qα
0 = ∂ α

0 H , qα
i = ∂ α

i H , pi
α i + p0

α0 = −∂αH +
√∣∣det(Gi j)

∣∣ρRgαηBη . (37)

To show the last equation of (37) we collect again the terms and have

pi
α i = di(

√∣∣det(Gi j)
∣∣P̆iτ)gατ +

√∣∣det(Gi j)
∣∣P̆iτ ∂β (gατ)qβ

i .

p0
α0 = ρR

√∣∣det(Gi j)
∣∣d0

(
gαβ qβ

0

)
∂αH =

1
2

1√∣∣det(Gi j)
∣∣
(

1
ρR

p0
α p0

β ∂α gαβ + S̆lmpl
ρ pm

τ ∂α gρτ
)

which produces the same equation as the relation (35).

5.4 The evolutionary point of view

Let us start to introduce the momentum in the spatial description which can be given as

pα = gαβ qβ
0 ρR

√∣∣det(Gi j)
∣∣ . (38)

In the material description we obtain

Pα = pα ◦ j1(Φ) =
(
gαβ ◦Φ

)
V β

0 ρR

√∣∣det(Gi j)
∣∣ ,

where the symbol of the momentum P should not be confused with the one of the Piola tensor. The total energy is
the sum of the kinetic and the stored energy function and consequently the Hamiltonian and reads as

H =
1
2

gρκ pκ pρ

ρR

√∣∣det(Gi j)
∣∣ + EelρR

√∣∣det(Gi j)
∣∣ .

The equations of motion can be written as

∂0Φβ =
(

δ β
H

)
◦ j1 (Φ)

and
∂0Pβ = −

(
δβ H

)
◦ j1 (Φ)+

√∣∣det(Gi j)
∣∣ρRgβ ηBη

which are the counterpart to the relations (36). In the set of equations the variational derivatives read as

δ β = ∂̇ β = ∂ β
0 , δβ = ∂β −di∂ i

β .

It is worth mentioning that in the case where the Legendre map only consists of the temporal momenta the problem
of regularity is much easier since it only depends on the mass metric tensor.

6 Conclusion
In this contribution we presented an analysis of different concepts regarding first order field theory in mechanics.
Further directions of research will include beside an analysis of higher order problems preeminently a detailed
discussion of the boundary conditions. Also the problem of regularity should be analyzed and it will be interesting
to apply the proposed methods [1, 4] to continuum mechanics.
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