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Abstract. In this work we investigated how robust a robot swarm acts against disturbances caused 

by another robot swarm, both using the BEECLUST algorithm. We show that small swarm popu-

lations can gain benefit from the presence of other robot swarms. Medium populated swarms are 

affected neither positively nor negatively. Large swarm populations act robust against disturbances 

caused by other robot swarms as long as no jamming effects occur. For our investigation we simu-

lated an environment with an ambient illuminance, a light spot and a shadow spot. In such an en-

vironment we tested two different castes of Jasmine III robots whereas each caste had to perform a

different task. One swarm aggregates at places of high illuminance (light spot), the other one at 

places of low illuminance (shadow spot). In this article we show that the robustness of the BEE-

CLUST algorithm allows us to control a heterogeneous robot swarm in environments which de-

mand differing controller strategies.

1 Introduction
Swarms of autonomous entities (animals, robots) show interesting features: Huge numbers of agents act and in-

teract  in high densities and often perform their tasks in separated specialised cohorts. The regulation of the 

agents behaviours is often self-organised and swarm intelligent, features that are mainly achieved by various in-

terlinked feedback loops within the swarm system. When creating artificial (e.g., robotic) swarm systems, these 

feedback networks can quickly get rather complex and swarm behaviours can easily become unpredictable. This 

generates the demand for finding simple behavioural rules for individuals and also simple rules of interactions. 

Such rules can often be found in natural swarm systems. This allows extraction of such regulation mechanisms 

and translation of these feedbacks to artificial swarm systems, which in turn show then comparable behaviour 

like the natural sources of inspiration. We recently demonstrated such a translation of natural algorithms to a 

swarm robotic algorithm by developing the BEECLUST algorithm [8]. In the following, we demonstrate how 

this  algorithm scales  with  swarm sizes  and  how cooperation  can  emerge  (without  being  pre-programmed) 

between several interacting robot swarms:

Compared to single robot systems, robot swarms have the advantage to work quite robust, because the removal

or malfunction of single individuals affects the behaviour of the whole swarm only slightly. Robot swarms are 

also able to act “swarm intelligent” which permits a group of individuals to make decisions to reach a common 

goal in a decentralised manner [7].

In recent works it has been shown that a swarm of Jasmine III robots using the BEECLUST algorithm, which is 

inspired by honeybee behaviour, is able to find locations of maximum illumination using a few simple rules [8] 

(see Figure 1):

1. Robots move straight through the arena. Whenever a robot detects an obstacle, it stops and checks if the 

obstacle is another robot or a wall by listening for emitted IR signals.

2. If the detected obstacle does not emit IR signals it is a wall. The robot turns randomly and continues 

with step 1.

3. If the detected obstacle does emit IR signals it is another robot. The robot measures the local illumin-

ance.

4. Depending on the local illuminance, the robot calculates a waiting time: the higher the local illumin-

ance, the longer the waiting time. After the waiting time is over, the robot turns randomly and continues 

with step 1.

Our recent studies showed [7], that the BEECLUST algorithm allows a robot swarm to aggregate collectively at 

a light spot. This is achieved by robots that move purely random, having just one illuminance sensor that does 
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not allow a directed gradient exploitation. Also no memory of past illuminance values is involved in the al-

gorithm. The measurements of the environment occur only seldom, only after robot-to-robot collisions. Although

the individual “intelligence” of single robots is kept quite low, the swarm as a total was found to act very intelli-

gently, even in dynamic environments. The reasons for this emergent ability are the feedback loops that arise 

within the robot swarm, as is explained in detail in [4].

Based on the work of  [8] we investigated how the robustness of the BEECLUST algorithm is affected by the 

swarms population and how it is influenced by a second group of robots in the arena performing a different task 

at the same time. 

2 Methods
For our experiments we used SMARS (Small Robot Simulator), a simulation environment programmed in Net-

Logo [5], which was built by us for performing experiments with simulated Jasmine III robots (see Figure 2). In 

this simulation environment we were able to simulate two different castes of Jasmine III robots which were im-

plemented with the physical properties of the real robots. The only difference between the two castes is that one 

caste waits longer at places of high illuminance (“light finders”),  the other one at places of low illuminance

(“shadow finders”). There is a direct proportion between the illuminance and the sensor value whereas the max-

imal sensor value (180) is reached at 1000 lux and above. 

Figure 2. Screenshot of two robot swarms acting in the simulation environment SMARS. The white spot is the 

optimum for the “light finders” with 1000 lux and the black spot is the optimum for the “shadow finders” with 0 lux. 

The ambient illuminance is 500 lux. Robots are represented by colored boxes which represent their caste and state: blue 

boxes are “light finders” in waiting state, red boxes are “light finders” in driving state, green boxes are “shadow 

finders” in waiting state and yellow boxes are “shadow finders” in driving state. The red line shows a trajectory of a 

randomly chosen robot for demonstration purposes.

Figure 1. Finite state machine of the BEECLUST controller. Boxes 

represent the different behavioural states of a robot. * indicates the 

starting point. Diamonds represent control structures (if-else decisions). 
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In our model sensor values are a linear function of local illuminance, as it is explained by Equation 1:  

ex , y��E x , y� , if ex , y	Emax

  

emax , else
, (1)

whereby  ex,y represents the sensor value of the robots light sensor at the position x,y in the arena and  emax the 

maximum sensor value of a robot. Ex,y is modelled as the illuminance at the position x,y and Emax as the maximal 

perceived light value.  � refers to the translation coefficient (for details see [9]). The waiting time of the “light 

finders” is modelled as 

wx , y
L �

wmax

1�exp

�ex, y�o� , (2)

for “shadow finders” it is modelled as

wx , y
S �

wmax

1�exp

�emax�ex ,y�o � , (3)

whereby wx , y
L refers to the waiting time at the position x,y for “light finders” and wx , y

S for “shadow finders”. 

wmax is modelled as the maximum waiting time, ex,y is the robots actual sensor value, emax is the maximum sensor 

value, o is the vertical offset and � is the steepness. Equation 2 and Equation 3 are both illustrated in Figure 3 

The given values for the constants can be seen in Table 1.

Figure 3. Illustration of the dependence between the local illuminance ex,y and the waiting time wx,y. The solid drawn function 

was implemented in the “light finders”, the dashed drawn function was implemented in the “shadow finders”.
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Constants Values Dimensions

wmax 60 sec

emax 180 dimensionless

Emax 1000 lux

� 0.18 dimensionless

o 147 dimensionless

� 0.5 dimensionless

Table 1. Constants and their values used in  Equations 1, 2 

and 3, in our simulation runs presented in this article .

We generated an environment with an ambient illuminance of 500 lux. In this environment we added two differ-

ent kinds of optima, a light-spot with 1000 lux and a shadow-spot with 0 lux (Figure 4). We defined a target-

zone for the “light finder” caste consisting of all patches having a light value between 600 lux and 1000 lux. This 

is 40% of the maximum light value in the arena. As mentioned above each robot which meets another robot cal-

culates the waiting time individually, depending on the local illuminance but regardless of the other robots caste. 

To find the optimal density of a Jasmine III swarm we first tested groups of differing population sizes only con-

sisting of “light finders”. For each swarm population we repeated the experiment 6 times for 4 minutes. To get 

an overview of the final conditions of our robot swarm, we monitored the fraction of the “light finders” in the 

state “wait” located in the target-zone in the last minute of every repetition. To analyse the aggregation speed we 

monitored the point of time when 50% of the “light finder” population aggregated in the target zone (TA50). To

test the robustness of a robot swarm against disturbances caused by another swarm performing another task we

added groups of variable numbers of “shadow finders” and observed how they affect the aggregation behaviour 

of the “light finders”.

Figure 4. (A) Overhead screenshot of the arena in SMARS. The bright 

area indicates the light spot, the dark area indicates the shadow spot. (B) 

Sensor values detected by the robots. Samples are taken from patches 

with y = 0, which is the vertical centre of the arena.

907

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



3 Results
Our results show that there is an optimal density of the tested robot swarms for the used environmental condi-

tions. This optimal density was found at a swarm population of 9 individuals (see Figure 5). A swarm consisting 

of 9 individuals is able to place 80% of its individuals in the target zone. 

Figure 5. Fraction of robots in target zone over the last minute of observation. The optimal 

swarm population for the given environment was found at 9 robots. The tested swarm

populations were 2, 3, 6, 9, 12, 18, 24, 33, 42, 60, 100, 120 individuals, n = 6 repetitions 

per experiment.

Figure 6. Fractions of “light finders” aggregated in the target zone within the last minute of observation 

(median � quartiles, min and max). NL is the total number of “light finders”, n = 6 repetitions per experiment.
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In Figure 6 we demonstrate that in small robot populations (NL = 2, NL = 3) the fraction of aggregating robots

under the light source increases with the number of other robots in the arena. Medium populated robot swarms

(NL = 6 to NL = 18) have a constant fraction of robots aggregated under the light source, independent of the num-

ber of other robots in the arena. Larger swarms (NL = 33) show a decreasing fraction of aggregated robots with 

increasing number of other robots in the arena. 

Concerning the aggregation speed we show that small robot populations (NL = 2 to NL = 3) do no aggregate under 

the light source as long as no other robots (NS = 0) are present in the arena (Figure 7). The aggregation speed in-

creases with the number of other robots (NS > 3). Medium populated robot swarms (NL = 6 to NL = 18) aggregate 

with the same speed under the light source, independent of the number of other robots in the arena. Larger robot 

swarms (NL > 18) show a decreasing aggregation speed with increasing number of other robots in the arena.

To allow us investigations of the observed enhancements of aggregation, which the focal robot swarm can draw 

from the presence of the other swarm, we developed two numerical expressions of aggregation enhancement: 

ΔFAL,  which expresses the increase of the aggregation fractions in the presence of 33 “shadow finders” com-

pared to runs were “light finders” acted alone (see Equation 4). In addition ΔTA50 expresses the increase in the 

speed of aggregation when such simulation runs were compared (see Equation 5).

�FAL�FA�N S�33�
FA�N S�0 � (4)

Figure 8, where ΔFAL was evaluated for different swarm sizes of “light finders”, shows that small populations 

show an enhancement of their ability to aggregate by increasing number of other robots, whereas larger popula-

tions are not affected, whereby ΔFAL represents the difference between the fraction of “light finders” in the tar-

get zone at a “shadow finder” population of 33 FA�N S�33 � and a “shadow finder” population of 0 FA�N S�0� .

Figure 7.Time in which 50 % of the “light finder” swarm aggregated in the target zone (TA50) at different

population sizes of “shadow-finders” (NS). NL is the number of “light finders”, n = 6 repetitions per experiment.
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To investigate also the advancements in aggregation speed, which are caused by the presence of the other robot 

swarm, we defined an aggregation enhancement ΔTA50 according to

�TA50�TA50

�N S�0 �
TA50

�NS�33� , (5)

whereby TA50

�N S�0� is the point of time when 50% of the “light finders” aggregate under the light source by a 

population of 0 “shadow finders” and TA50

�N S�33� by a population of 33 “shadow finders”. In Figure 8 we show 

that small populations of “light finders” aggregate faster by rising number of “shadow finders.” Medium popu-

lated swarms only take small disadvantage by a increasing numbers of “shadow finders” and large “light finder” 

populations take strong disadvantage.

Figure 8. Shown is the enhancement of aggregation ΔFAL in seconds which is 

the difference of fraction between NS = 0 and NS = 33, for NL = 2 to NL = 33. For 

details on the formulation of ΔFAL, please see Equation 4.

Figure 9. Shown is the acceleration of aggregation ΔTA50 in seconds which is the 

difference of TA50 between NS = 0 and NS = 33, for NL = 2 to NL = 33. For details 

on the formulation of ΔTA50 , please see Equation 5.
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4 Discussion
As shown in Figure 5, a robot swarm using the BEECLUST algorithm has an optimal swarm population of 9 in-

dividuals for the tested arena size and illuminance patterns. First of all the swarm of “light finders” gains effi-

ciency from a higher swarm population, until jamming and collisions affect the aggregation efficiency adversely. 

We expect a different finding in a diverse dimensioned environment because the optimal population size is de-

pendent on the robot density.

Concerning the robustness of the swarm, we found that small “light finder” populations gain benefit from in-

creasing numbers of “shadow finders” in their ability to aggregate as well as in their aggregation speed. This res-

ults from a higher total number of robots in the arena, more collisions happen and lead to an increasing fre-

quency of light measurements.  Medium populated swarms act robust in presence of another robot swarm con-

cerning their ability to aggregate as well as concerning their aggregation speed. Both of these observables are af-

fected only slightly. The advantage of more measurements and the disadvantage of jamming cancel each other 

out. Large swarms take disadvantage from a rising number of other robots, because the robot density gets too 

high and jamming effects occur. The appearance of advantages in aggregation caused by other robots in the 

arena is caused by the increase of robot collisions which go along with higher robot density in the arena. This 

leads to an increasing number of light measurements due to a rising number of robot collisions. But if the density 

of robots in the arena is too high, jamming effects occur. This leads to a lower quantity of aggregation (Figure 6 

and Figure 8) and lower aggregation speed (Figure 7 and Figure 9). 

With the work at hand we show that the BEECLUST algorithm is not only capable of working robust in a homo-

geneous robot swarm, but it is also suitable in heterogeneous robot groups with differing controller strategies,

even without discrimination of caste affiliation of other robots. Those gained benefits allow us to use the BEE-

CLUST algorithm in environments which may demand heterogeneous controller strategies, e.g. tanking up en-

ergy: Robots with a lack of energy aggregate at the fuelling station, whereas robots with enough energy accom-

plish their mission. 

Bio-inspired algorithms, like our honeybee-inspired BEECLUST algorithm, are frequently investigated in the 

field of autonomous robotics in recent years and are combined with a big variety of techniques: K. Sims showed 

the first simulation of virtual creatures which were able to evolve animal-like behaviours and morphologies[9]. 

Marocco et al. evolved various robot populations [6], which developed several communication schemes by a 

process of artificial evolution. Other studies experimented with robots which were able to integrate in insect so-

cieties [3]. Also the field of bio-inspired control algorithms for large populated robot swarms has been investig-

ated intensively: In the I-Swarm project [10] techniques for controlling a swarm of 1000 microrobots were in-

vestigated. The Swarmbot-project [1, 12] investigated the self-organising abilities of a robot swarm, consisting 

of simpler, insect-like robots. In the Symbrion-project [13] the concept of a swarm of reconfigurable robots is in-

vestigated. The Replicator-project [11] plans to develop an autonomous robot swarm for industrial purposes. 

The topic of aggregation of swarms of agents is a common benchmark in the field of swarm robotics: Dorigo et 

al. used an evolving neural network consisting of 12 neurons for robot aggregation [1]. Compared to this work 

the BEECLUST algorithm is quite simple, because it gets along with just a few basic rules and therefore it needs 

less processing power and memory. Other experiments with cockroach-like robots have been performed in simu-

lations as well as in real world [2]. The main difference to our work presented here is the ability of cockroach-

like robots to measure the number of other nearby robots. This requires a unique ID and communication between

the individuals. Our robots, which use the BEECLUST algorithm, neither need to discriminate between several 

robots nor to know how many individuals are located in a nearby aggregation spot.

In summary, the BEECLUST algorithm is simple and therefore it needs little capacity. It does not use any com-

munication in a biological sense. The robots are able to distinguish other robots from obstacles in the environ-

ment via their physical properties and characteristics, but they do not need to know “which” and how many other 

robots are around. Above all, our study presented here shows how robust the BEECLUST algorithm works and 

how versatile its applicability is despite its simplicity.

In future we will investigate how the distribution of light in the arena (gradient or discrete) influences the ag-

gregation behaviour. Furthermore we will investigate how the distance between the two optima influences the 

aggregation behaviour.
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