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Abstract. Engineering of complex automation systems is a major cost factor. One reason for the com-
plexity of engineering processes is the tight coupling of automated functions and the actual automation
device. The paper introduces a method and architecture to de-couple functions from devices. As foun-
dation Peer-to-peer and Grid computing technologies are applied to provide a flexible framework for
automated functions. A key issue is the applicability in actual industrial systems which is accounted for
by designing an algorithm which can be implemented cost efficiently on resource constraint devices.
The approach is evaluated through extensive simulations which demonstrate benefits and applicability
of the proposed architecture.

1 Introduction
Engineering is the major cost factor in the construction of state of the art industrial systems. Automation equip-
ment features a multitude of parameters that need to be configured and parameterized during commissioning of a
plant. Additionally, the environment is highly heterogeneous with multiple equipment vendors and product ver-
sions. Finally the recent demand from customers to build more flexible, easier to customise and fully integrated
manufacturing systems adds to the complexity.

Several approaches have been proposed to cut engineering costs. One way to achieve more flexible automation
system is to shift to decentralised architectures [14] [11]. However, these approaches mark a major paradigm shift
in automation which is currently not supported by neither equipment vendors nor system integrators. The key prob-
lem, however, the so called point to point dilemma, i.e., the tight coupling of automated functions and resources
remains unaddressed. Today systems are designed statically by directly specifying end-to-end communication. For
example, sensor S delivers data to motor M. If M is replaced, or other units are interested in data generated by S,
each new connection needs to be configured end-to-end. Thus an enormous conglomeration of static communi-
cation links is the result. Besides being expensive to configure, the static interweaving of automation equipment
prevents flexible execution of control software.

In this paper, we present an architecture capable of de-coupling individual automation equipment. We propose
a robust and self-organising system to discover resources at runtime in a networked automation system using
declarative resource discovery. We use Peer-to-Peer (P2P) and Grid computing technology originally designed for
the Internet and advance them such that they can be implemented on even resource constraint equipment. P2P
systems such as Chord [18] and CAN [15] provide the foundation for loosely coupled systems in the Internet.
However, both their code complexity as well as stabilisation effort, i.e. the intensity of required communication,
suggest cost intensive realisations and hence those approaches are rather unlikely to emerge in industrial products.
We therefore investigate how a lightweight algorithm can provide similar features albeit being less capable in an
Internet scale, i.e., millions of users, scenario.

The structure of this article is as follows. First we describe the related art in P2P computing and its application in
automation systems. After that a system overview introduces architecture and core concepts like queries, stabili-
sation and grid functionality. Providing a simple application example the discovery process is illustrated. Sections
with simulations and the discussion of our results conclude the paper.

2 Related Work
In recent years structured P2P protocols have been extensively studied. Ratnasamy et al. suggest in [15] a multidi-
mensional hash table for distributed data management whereas in most of the related work like [18], [2] different
routing algorithms in one dimensional distributed hash tables (DHT) are suggested. Since DHTs are not suitable
for complex queries such as range queries, there is considerable research effort in enhancing such distributed data
structures in a way that range queries can be managed at low costs. One major approach in this field of research
is the application of prefix hash trees (PHTs) as proposed in [17]. This approach suggests that data is stored in
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a tree structure that grows and shrinks dynamically with the amount of data being stored. Data is sorted in the
tree leaves according to a prefix matching algorithm. The prefixes of the tree nodes are then stored in a DHT. For
range queries the first node that contains data is evaluated by consistent hashing and after finding this node only
the subtree beyond this tree node must be searched for data. A similar approach is suggested in [12]. A different
method for range queries in DHT structures is based on space filling curves, first described by Guiseppe Peano in
1890. Such search algorithms are described in [1], [8] and [21]. In [1] a range query method is introduced that
is optimised for information search in grid information services. Spanning Trees to enhance routing capabilities
in P2P networks are evaluated in [6] and [10]. In [10] a self-stabilising spanning tree algorithm is suggested that
is capable of handling churn events like common DHT protocols for Internet scale applications. The algorithm
additionally provides optimum results in networks where no global network view can be provided. In [6] an algo-
rithm is described that allows placing of processes in a self-healing and ordered spanning tree in which distributed
object queries are routed. In the context of industrial automation systems, concrete P2P mechanisms are proposed
in Drinjakovic et al. [5] who suggest lookup methods in a process control system using P2P networks. Thereby
information resources are grouped according to a structured naming scheme and search methods provide deter-
ministic access at runtime. The described query method, however, is one dimensional and thus limits queries to
keyword searches.

3 Overview of our Approach
We address the point to point dilemma by designing automation systems as loosely coupled orchestrations of
automation assets. Similar approaches are taken in service oriented architectures (SOA) such as sensor Grids or
similar Grid computing [7] applications. In SOA, assets are described by the service, i.e. the function, they provide.
Services encapsulate resources which execute the functions provided by the service via a service interface which
in turn provides a consistent view on the resource. Besides the service interface, a service description provides
information about the interface as well as qualities of operation and management. In order to use a service, a
service consumer states his interest in a service query and issues the query at a service registry which maintains
all available service descriptions. Once found, the service consumer binds to the service first and then executes
the desired functions (Figure 1). A key advantage of the service oriented approach are the different temporal
options for service binding. Early binding is referred to at design time when requirements are mapped to service
descriptions. Late binding, in contrast, renders a system more flexible as the service consumer binds the service
at runtime. Ultra-late binding takes the concept one step further as applications are created by composing services
dynamically for each invocation and removing services from the application after they are no longer needed.

Service Provider

Service
Service 

Consumer

Registry

find publish

bind/execute

Figure 1: Actors in service oriented architectures: provider, consumer and registry

In order to support late and ultra-late binding paradigm, the service registry must provide efficient means to process
the service query and match it to service descriptions accordingly. Solutions for this service discovery process
range from simple keyword searches to evaluation of fuzzy logic and semantic reasoning. While the expressiveness
of keyword searches is often not sufficient for complex service descriptions, the resource demand for semantic
matching prohibits cost efficient solutions. A flexible compromise is provided by complex declarative queries,
common in most database systems. Query languages like the standard query language (SQL [4]) provide rich
semantics to express complex interests yet they can be implemented efficiently.

While centralised registries can be implemented efficiently, they are additional infrastructure components that need
to be integrated and maintained. Distributed registries, however, use already existing resources of the networked
assets. They are further more robust and scale dynamically with the number of networked assets. In the following
paragraphs we describe a generic service oriented architecture for loosely coupled automation devices. Being a key
component, we emphasis in the description of a distributed service registry with support for declarative queries.

Figure 2 illustrates the multi layer architecture of a service oriented automation system. As foundation, the dis-
tributed registry collects service descriptions and provides query interfaces. Networked assets are interlinked via a
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self-organising overlay network. The overlay acts as network virtualisation by abstracting physical network topolo-
gies and providing content based addressing schemes. A query engine parses incoming queries and generates a
query execution plan. A data management component organises service descriptions and handles their storage
on respective assets. Building on the abstract service descriptions, a resource virtualisation layer coordinates re-
sources allocation. It provides a level of abstraction to establish location transparent resource access. Further it
allows to aggregate several atomic resources to higher level concepts. For example a boiler is a high level concept
being composed of several assets, e.g., sensors, pumps and heaters. Finally the service level combines atomic
and composite resources to services and service workflows like automated functions or monitoring and analysis
functions.

Peer-to-Peer System
Distributed Registry

Overlay
Data 

management
Query Engine

Resource Virtualisation
Networked Resources

Serivces
Automated 
Functions

Analysis & 
Diagnosis

Resources

Figure 2: Automation Grid Architecture

Before we can describe the resource discovery process we need to introduce a simplified resource model. The
model is based on Chen’s Entity-Relationship model [3]. It is rather generic and can be mapped to more advanced
approaches like the WS-* standards. Based on this model, a domain specific query language is introduced that
enables declarative resource discovery.

3.1 Resource Model

The concept of a resource denotes any asset in a networked automation system such as sensors, actuators, as well
as information entities like device states and condition. Each resource R is modelled through a finite and ordered
list of features f1.. fn. Features have a class L and a value V as well as an informal description. The set of all
features of all resources span a vector space F . A resource relationship is an association among resources. For
instance, a resource temperature sensor is associated to a resource controller as it delivers required measurements.
A correlation of resources describes a temporary semantic similarity of resources. Correlations can be quantified
via a distance metric M. Hence correlated resources can be organised in a cluster structure. Put formally, resource
Ri belongs to group with centroid Gi iff ‖Ri−Gi‖M ≤ r where r is an application specific radius. Whereas the
centroid is a numerical representation of the correlation.

3.2 Peer-to-Peer Subsystem

As peer we understand a software component that is hosted by networked assets. Resources are managed by peers
and all peers are interconnected in a P2P network. Resource correlations emerge dynamically during the lifetime of
a system. There are computed continuously at individual peers by exchanging information on hosted an associated
resources and applying a correlation function.

The topology of the overlay network is determined by resource relationship and correlations. Peers hosting cor-
related resources are more likely to be neighbours while peers with non correlated resources are unlikely to be
directly linked.

3.3 Resource Discovery

Supporting existing programming models, automated services can be defined using common standards, e.g., IEC
61131, augmented with a declarative semantics for resource discovery. Hence resources are addressed not directly
using physical memory or network addresses but rather declaratively, namely using queries that describe what
features of the resource are required. To support query composition and execution, we developed a query language
to express resource interest in an abstract form, hiding unnecessary details. A complete description of the language
is beyond the scope of this paper. In the following we introduce the key features of the language by discussing a
simple query statement.
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Listing 1: Example of a continuous query

1 SELECT * FROM RESOURCES
2 WHERE resource
3 HAS FEATURE(r=0, 575, 35345, 767854, *)
4 TOP 1
5 WINDOW(0, FOREVER, 1s)

The example provided in Listing 1 illustrates a simple resource query stated in our language. The language is based
on the well known and widely adopted standard query language (SQL [4]) but augmented with additional state-
ments for resource selection. While the SELECT ... WHERE clause is standard, the HAS FEATURE(TUPLE),
specifying the requested resource, is a unique extension in our system. A tuple consists of a specification of the
maximum distance r between query and resource whereby r = 0 limits the result to only exact matches. The rest of
the elements specify the features of the resource being searched for. The wildcard character ’*’ causes the particu-
lar feature to be excluded from the evaluation. The TOP n operator reduces the result set to the n resources closest
to the feature specification. Queries can run either once as snapshot query or continuously over a period of time.
If run once, the query returns a single result set while if running continuously, the query initiates a data stream of
result sets. The WINDOW operator specifies the activation interval of the data stream. The first two parameters
set start and end time while the third parameter specifies the interval of execution, e.g., every 10 seconds. Once
injected into the network, queries are compiled to binary form and loaded in the local query engine. An execu-
tion plan (Figure 3) is generated and scheduled for processing. The plan lists all actions necessary to deliver the
requested result set. The plan depicted in Figure 3 first checks locally if the query can be evaluated with local in-
formation alone. If so query execution is complete. Otherwise the query is optimised and rewritten for distributed
execution. Query optimisation is a complex procedure where the query is restructured to reflect the overlay topol-
ogy as well as states of other concurrent queries scheduled in the same query engine. Afterwards a resolving action
is triggered which determines which peer might provide the requested information. This procedure in discussed in
detail in section 4. Subsequently the query as a whole or in part is assigned to the peer accordingly. Intermediate
results are stored in the local storage. The process continues until all requested information is contained in the
local storage. In case the maximum number of retries is reached or a timeout occurred an exception is raised and
the execution ends.

Process local 
storage

Resolve

Assign subqueryresult set

not found

found

Handle Exception

timeout candidate

non found

found

Figure 3: Query execution plan

Continuous queries are constantly evaluated, and hence can adapt to network reconfigurations and resource dynam-
ics. Therefor, each peer collects information on resource states and conditions from its neighbors and re-optimises
the query to reflect the new network condition.

4 Routing and Stabilisation
Besides query optimisation, resolving of candidates for query processing is a key element for every execution
plan. Each peer stores service descriptions of the resources it hosts in its local storage. Descriptions of composite
resources are hosted by all peers having associated resources. Hence the problem to address is to find a mapping
from the content requested via the query to a respective peer that can provide the content. In distributed hash tables
a hash function is applied which maps the query, i.e., the keyword to an identifier space which is partitioned over
all peers participating the DHT. For the distributed registry as described in section 3 a multidimensional lookup
mechanism is required which locates a resource based on a set of features specified in the query. Using a DHT,
this would require to maintain multiple overlay structures, e.g., a Chord ring for each feature causing considerable
compute and network overhead. Multidimensional approaches such as CAN seem more suitable but are restricted
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by their enormous code complexity which yet let to only small experimental deployments in artificial environments.
Additionally, using a uniform hash function, peers in standard DHTs are treated as equal independent of their
resource capacities. Data is stored as determined by the hash function, thereby not considering the specifics of
individual peers. Hence, resource constraint devices might get easily overloaded with popular keywords, e.g.,
’temperature’ whereas other devices might have unused capacities. On the other hand, unstructured approaches
like Gnutella v2, are able to assign different roles to peers depending on their network capabilities. However, due to
their non deterministic behaviour, i.e., stored items are not guaranteed to be found, they have not been considered
in technical systems. Playing on the peculiarities of automation systems features of both DHTs and unstructured
approaches can be combined to support complex query execution.

Automation systems are built for reliable operation for long periods of time. Thus, in comparison to the Internet
[19], from which most P2P algorithms originate, we can assume the environment to be rather static i.e. device
failure is rare compared to the time required to stabilise routing tables. Having to deal with limited dynamics an
iterative approach based on K-means clustering, e.g., [20] is chosen to stabilise the overlay and route information
between peers.

Routing and stabilisation evolves through two phases. In the first phase the system initialises, i.e., peers exchange
information about their resources, features and physical network addresses. Based on this information exchange,
peers cluster around certain centroids. In each cluster peers maintain a set of links to their neighbours. Based on
their neighbour links local routing tables are built which are used to map features and combination of features to
peers. The first phase ends when clusters and therefore routing tables stabilised leaving the system in a ready to
operate state. It is important to note that any further communication between entities in the system is based on
the routing information initialised during this phase. Only in the event of unit failure or reconfiguration, routing
information needs to be updated. This ensures that communication can be realised very fast by conducting only
lookup in local routing tables. In the 2nd phase peers monitor their resources as well as the resources of their
neighbours in the cluster. If a peer departs from a cluster it drops its routing tables and enters phase 1 to locate an
alternative cluster. Communication in phase 2 is gradually reduced to a minimum. If a peer failure is detected, a
notice is propagated within the cluster causing all connected peers to revaluate their connections within the cluster.

Having provided a high level overview of the routing and stabilisation procedure we now examine the cluster
formation and inter-cluster communication in further detail. At iteration k = 0, the network is initialised with a
random set of centroids {Cj,i,0 : 1 ≤ j ≤ K} distributed over all peers. Each peer counts the number of resources
associated to a centroid ‖Cj,k‖. In each iteration, the ith peer Pi picks a selection C of n peers at random from the
set of all peers and exchanges its local set of centroids and the resource counts with the selected peers. Having
received the centroids each peer begins to update, i.e. compute the mean, its local centroids thereby using resource
counts as weights. Peers in C that have resources associated to the same centroids as Pi are stored locally in
a neighbour table. This process is continued until the change of centroids between iterations is smaller than a
predefined threshold. Once the change of centroids of all peers drop below the threshold, the initialisation phase
terminates and each peer has its features associated to at least one centroid.

While clusters are highly connected, further links for inter-cluster communication need to be established. There-
fore, for each cluster, bridge peers are determined that establish links to other clusters. Initially in the process each
peer assumes it is the bridge to other clusters and forwards this information along with its distance to the target
cluster to all of its neighbours. Peers process this information and select the neighbour closest to the target cluster
as bridge peer. Acting as bridge, respective peers collect additionally to cluster neighbours also peers from clusters
they bridge to. Consequently inter-cluster links are established as the algorithm iterates.

5 Application Example
To further illustrate the workings and benefits of the declarative resource discovery mechanism, consider the tem-
perature control system depicted in Figure 4 based on [13]. It consists of an oven, e.g., to cure products made
of epoxy resin. Attached to the oven is a temperature sensor and a heater unit. We assume that both heater and
sensor are intelligent units that provide some form of communication capabilites as well as a compute component
to handle query processing.

A controller unit monitors the temperature readings of the sensor and sends control commands to the heater in order
to maintain the required temperature in the oven. It applies a simple PID controller to adjust the heater intensity.
This simple control loop, where measurements are acquired, processed by control logic and finally control actions
are executed is exemplary for a whole range of industrial control problems. Listing 2 shows the control program.
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Heater

Controller

Sensor

Figure 4: Simple control loop

Listing 2: Simple control program

1 DO
2 heaters -> SELECT * FROM RESOURCES
3 WHERE resource
4 HAS FEATURE(r=0, ’heater’, ’oven’)
5
6 sensors -> SELECT * FROM RESOURCES
7 WHERE resource
8 HAS FEATURE(r=0, ’temperature’, ’oven’)
9

10 heater.temperature = PID(sensor.temperature, 180)
11 LOOP

The system is modelled with heater and sensor as atomic resources while the oven is a composite resource com-
prised of heater, sensor and controller (Figure 5). The oven contains two associations namely heaters and sensors
which are defined as resource queries. For this simple example we assume that respective devices can be uniquely
identified by the specification of only two features in the query. The relations heaters and sensors contain all sen-
sors and heaters respectively that are currently installed. The feature valued ’oven’, causes all entities to group
in a single cluster. Upon query execution, the resolver iterates through the list of neighbours matching the query
against the features of the neighbour peers. Subsequently full service descriptions are retrieved from the matching
peers and cached locally.

Sensor

Controller

HeaterOven heaters

sensors

part of

1 *

1

1

1

*

Figure 5: Simple control loop

The statement at line 10 sets the temperature feature of the heaters according to the control logic. In case of multiple
elements in the heaters relationship all features are set accordingly. Thereby the data management component
ensures consistent propagation of the feature updates. Since the underlying system handles the resource lookup the
control program will remain the same indenpendently of where it is executed. Also if additional heaters or sensors
are built into the oven, no changes are necessary for neither control program nor sensor devices.
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6 Simulations
We conducted extensive simulations to demonstrate the stability of our algorithms. To assist real world applicabil-
ity our simulations are based on realistic network and failure models [9]. We do not assume synchronised clocks
at the peers and the simulation is capable to handle failure situations like failing peers and message loss. In order
to visualise the simulation results, we simulated peers with each having one resource with two features. Both
static features, i.e., having a constant value and dynamic features, i.e., a value changing over time were simulated
whereas dynamic features are based on the test signals shown in Figure 6a.

Limited to static features, the algorithm showed fast convergence and stable routing tables after only a few iter-
ations. More interestingly were simulations with dynamic features. Figure 6b shows a snapshot of a simulation
with dynamic features after 30 iterations and a cluster radius of 15 units. For this simulation peers where assigned
to five feature combinations: signal1:signal2, signal2:signal1, signal3:signal4, signal4:signal5, signal5:signal3.
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Figure 6: Simulation results for n=400 peers

As becomes evident in the figure, peers cluster around the five centroids and connections between clusters have
been formed. There are slight deviations in the proximity to the centroids due to the unsynchronised clocks and
randomised initial feature readings. As can be seen in the figure, the clusters have not fully stabilised with some
peers located outside the cluster radius.
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Figure 7: Simulation results from n=100 to 10000 peers

Figure 7a provides a closer look on a cluster after 50 iterations. The cluster is fully stabilised and peers within a
cluster are highly connected. The average number of connections per peer within a cluster is 36.725 with almost
equal cluster sizes of around 80 in the case for n=400 peers. Figure 7b plots the average node degree in corre-
spondence to the total number of simulated peers. The average number of connections per peer grows larger than
log(n) which yields, according to Erdös-Reyni, connectedness of the graph with high probability. In general it is
possible that clusters cannot stabilise since service descriptions are not correlated. In this situation, the network
will be highly connected because each peer acts as bridge to all other peers.
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7 Conclusion
We presented a light-weight method and architecture for declarative resource discovery in distributed automation
systems. Our approach differs from other content addressable network approaches e.g. [16] in that it is less com-
plex and hence easier to stabilise. The simplicity of our method alleviates implementation on resource constrained
embedded devices. The approach is particularly suited to the automation domain. It benefits from the static en-
vironment and the, in comparison to the Internet, small number of nodes. Clearly, using the mean as correlation
function will work only for simple correlations. In more complex and dynamic scenarios other methods might be
more appropriate. However, connectedness of the overlay is guaranteed due to inter-cluster connection. The k-
means clustering is highly efficient for static scenarios where features describe the static capabilites of the device.
Already in the static case the late-binding capabilites of the described method become effective and hence have
influence on engineering complexity.

Based on the simulations conducted, we are convinced that our method is well suited for multidimensional resource
lookup in modern automation systems. The declarative approach will simplify the engineering process while at
the same time increase robustness and enable automation systems to react adaptively to reconfigurations and fail-
ures. The approach is not disruptive but allows smooth migration from existing systems towards the more flexible
solution as devices can be gradually upgraded. Benefits become effective from the second device on. New is the
initial phase where the system collects autonomously all relevant information required for operation. Formally
this process was conducted manually by an engineer or an engineering tool at design time. Once initialised the
system can function as before with the addition of continuous but low bandwidth monitoring and optimisation of
the overlay network.
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