Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

ENCAPSULATION IN OBJECT-ORIENTED MODELING FOR MECHANICAL
SYSTEMS SIMULATION —
COMPARISON OF MODELICA AND BEAST

Alexander Siemers!, Peter Fritzson?, Dag Fritzson'
'SKF Engineering & Research Centre, Gothenburg, Sweden, 2Linkoping University, Sweden

Corresponding author: Alexander Siemers, SKF Engineering & Research Centre
Technology & Integration Department
SKF MDC, RKs-2
SE-415 50, Gothenburg, Sweden
alexander.siemers@skf.com

Abstract.

In systems engineering and object-oriented design, encapsulation is a key concept to handle complexity.
Interfaces are defined for the external interaction of a component, whereas internal details are hidden.
Complex systems such as cars or airplanes consist of many components, which in turn consist of many
components — hierarchically through many levels. Therefore composition is built into modeling lan-
guages such as Modelica. External interfaces must be defined for external interaction, whereas internal
components cannot be accessed if they are not available through these interfaces.

However, in 3D mechanical systems modeling and design, it is natural to be able to connect components
whose surfaces are externally available. For example, the motor belonging to a car can be externally
accessible in the 3D view, even though it can be regarded as an internal component of the car.

In this paper we compare two modeling approaches, one is Modelica used for systems engineering as
well as modeling of multi-body systems and the other one is BEAST which is a specialized multi-body
systems tool with good support for contact modeling. The current Modelica approach requires strict
interfaces with encapsulation of internal components, whereas BEAST allows connections to internal
components which are visible in a 3D view, which is often natural from the 3D mechanical systems
point of view. For 3D mechanical systems, Modelica might be too strict, whereas BEAST might be
too forgiving. Two different solutions are presented and discussed (in the form of possible Modelica
extensions) to combine the advantages of both approaches.

1 Introduction

Multibody systems are used to model mechanical systems in which several bodies (components in mechanical
systems) interact with each other.

Object-oriented modeling has been applied to different application areas within the domain of mechanical system
simulations. However, what are the right abstractions to represent real-world objects (bodies) in the computer?
To address such problems, object-oriented programming [1] and modeling has been invented and applied to many
different application areas, also within the domain of mechanical system simulations. Fritzson and Fritzson [14],
for instance, apply object-oriented concepts to modeling and simulation of machine elements applications. More-
over, in this context the equation-based object oriented language ObjectMath [22] is also introduced for mod-
eling and simulation in general. Another equation-based object-oriented language for multi-physics modeling is
Dymola [17]. Both of these are ancestors of Modelica [9] [23]. Modelica’s and Dymola’s features allow for domain
specific class libraries including multi-body systems [17] [20] [19].

More specific examples of object-oriented modeling for mechanical systems are, for instance, rolling bearings [18]
and robot systems [15]. Object-oriented concepts have not only been applied to multi-body systems but also used
within other areas for mechanical system simulation, e.g., finite-element analysis. Cross, et.al. [16], for instance,
investigate the advantages and disadvantages of object oriented concepts for finite-element analysis. They argue
that object oriented modeling has many advantages but is not useful for small problems - only for larger problems
that can be divided into smaller sub-problems.

Not only are object-oriented principles applicable to different application areas but they can also be applied in
different ways within the same modeling domain.

1.1 Modeling and simulation environments

The analysis and comparison presented in this paper have been conducted with Modelica [9] [23], a general
equation-based object-oriented modeling language for multiple application domains, and BEAST [11] [12], a
tool for object-oriented modeling and simulation of multibody systems, with special support for contact problems
of rolling bearings and rolling bearing related applications.

1333

I. Troch, F. Breitenecker, eds. I1SBN 978-3-901608-35-3

b=
all xg

N L B iy [y |
(a) A typical Modelica tool, 2D graphical user interface, that allows for
class design and model composition.

Epi3SRB4 V_L81
File Edit Properties Run obal Model Ani Help

Name =
[}
Oies

O LctGS1{etGS)
O L2etG52(ctGS)
O ket

O LLctLH1{ctlH)

O L ctLH2(ctLH) -~
MmPERG1
Oleetile -
OlLctiRe \
O LctIR ‘
O L. ctER -
O LetiGR
O L.eHERGF
O LcHERGE
" E I Colort;
P —— . S | _Mavie | i Refresh
O L.eHERF2{etERGH | x-n Wisibility | Snap
1 cHERB1(CUERGI
o ctersa(cterci |C1PPng |Dslay | Pixel | Motion | Magrity Surfaces | Magnify Motion |
- bW A
¢ fEIDRW E Adjust chip plane 1.00

(b) BEASTSs graphical simulation pre-processor allows for a three dimen-
sional model view.

Figure 1: BEAST and Modelica tools have graphical user interface support.

Both the Modelica simulation environments and the BEAST simulation environment allow for graphical model
composition, see Figure 1. The different characteristics of the modeling approaches are reflected in the graphical
modeling environments. Pure mechanical system simulation environments, e.g. BEAST, typically support 3D vi-
sual representations of the simulation model. Another example of a mechanical system tool supporting 3D model
editing is MSC.Adamas. On the other hand, most GUI s for systems engineering and multi-engineering environ-
ments, including Modelica-based tools, primarily use 2D connection diagrams for graphical modeling. However,
in several cases (e.g. the Modelica MultiBody library) 3D visualizations/animations can be generated from such
models. Also, some ongoing work introduces 3D GUIs for model editing, e.g. in the Simantics project [25].
There are also multi-physics environments such as FEMLAB, primarily for FEM/PDE problems, which has a 3D
modeling GUI, but are oriented towards shaping and connecting just a few components — not a large number of
components (hieachically at many levels) as in systems engineering.

1.2 Structuring of this paper

Section 2 introduces basic object-oriented concepts, with applications to multi-body systems. Section 3 presents
Modelica-based tools and the BEAST tool, and how these tools are applied for multi-body system modeling.
Section 4 discusses the key concept of encapsulation and contacts in the context of multi-body system modeling,
with special reference to the Modelica and BEAST approaches. Section 5 compares model libraries and model
composition in Modelica and BEAST; and finally Section 6 presents the conclusions.

2 Object-Oriented concepts applied to multibody-systems

A multibody system model typically contains, but is not limited to, the following objects:

* An environment object that defines the boundary conditions for a mechanical system, e.g., gravity and ex-

1334

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

ternal forces.
« Self-contained objects such as physical objects (e.g., bodies) and abstract object (e.g., coordinate systems).
« Connection objects that define contact interactions between bodies as well as other links between self-
contained objects.

Different classes of objects appear at different levels of abstraction in the class hierarchy. For example, a body
class is the generalized form (a parent class) of flexible-body and rigid-bodly.

Objects are instances of such classes. They are typically organized in hierarchical whole-part or parent-child
relations that build the object hierarchy of the multibody system, e.g., rings, rolling-clements, and cage are parts
of a rolling-bearing (the whole), see Figure 2.

Outer Ring Inner Ring

\ Rolling Elements

Figure 2: A ball bearing model consisting of two rings, several balls, and a cage.

2.1 Associations in object-oriented models

Several relations are defined between the objects and classes in an object-oriented model. An association is a
relation between two objects that does not imply a hierarchical relationship between them. Objects simply know
about each other.

Aggregation is a strong form of association. It describes whole-part or containment relationships. It is common
to distinguish between aggregation and composition. Composition is a strong form of aggregation where the
aggregate is responsible for instantiation of its components. This is not the case for an aggregation. Components
in a composition can therefore not exist without the composite. The gearwheel in Figure 3 is responsible for
instantiating its surface objects, i.e., there exists a composition relation between the gearwheel and its surfaces.
The gearwheels on the other hand are created independently from the gearbox and added to it afterwards, which is
an aggregation relation.

GearBox 0 * GearWheel 0 * GearWheelSurface
> >——

Figure 3: Aggregation is used to assemble the gearbox from different gearwheels. Composition describes the strong
relationship between a gearwheel and its surfaces, e.g., teeth.

3 Tools for modeling mechanical system simulations

Two approaches/tools for mechanical system modeling are compared in this paper. One (BEAST) is used exclu-
sively for mechanical system modeling, i.e., multibody system modeling. The other (Modelica) has a broader
application area, i.e., multi-physics system modeling including multibody system modeling as a special case. The
following main observations have been made:

* The modeling process is often very domain dependent. A general target domain of the simulation tool also
requires a general modeling process. For example, general multi-physics modeling requires a high level of

1335

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

flexibility, i.e., class and interface design, while pure mechanical modeling can utilize predefined classes of
objects.

» Composition hierarchies can be created in several ways. One method of creating object hierarchies is object-
oriented composition where the part objects are declared as belonging to a containing object. More flexible
hierarchy composition can be achieved at runtime, e.g., adding or removing child objects on demand using
flexible data structures such as linked lists to represent the containment relation.

* Modeling of contacts between mechanical parts requires accessible interfaces. Contacts in multibody sys-
tems are possible between any two bodies in the model that do not have any intervening object or boundary
that prevents physical contact. For example, if the surface of a body is exposed to the outside world it can
in principle be connected to any outside body, whereas a body which is hidden within a physical container
(e.g. a box or a sphere) cannot be connected to outside bodies. If the simple solution of making all inter-
faces globally accessible is used, additional (geometrical) checking will be needed to prevent unphysical
impossible contacts.

* Graphical user interfaces are often domain dependent. For example, (regarding 3D mechanical system mod-
eling) mechanical systems are three dimensional by nature. In order to fully understand and verify such
systems behaviour a user interface with support for three dimensional visual representations of the complete
system is desirable. vs. 2D)

These issues are discussed in the following section, which also gives a short introduction to the BEAST and
Modelica modeling approaches.

3.1 Modelica and BEAST/BML

BEAST [11][12] is a toolbox for modeling, simulation, and analysis of detailed contact problems in bearing-related
multibody systems. Besides the simulation kernel and the pre- and post-processors it includes an object-oriented
C++ library for multibody system modeling. Model composition is performed with a graphical tool that allows the
user to instantiate, connect, and combine models from a pre-defined BEAST library of basic models. To represent
and store a user-defined model BEAST uses a special purpose language representation with a strict notation and
grammar. The BEAST modeling language (BML) is a domain-specific language designed for modeling of multi-
body systems in order to simulate their behavior. The BEAST simulation kernel parses the BML file and creates
the necessary class instances that represent the simulation model at run-time.

The BEAST library contains basic classes for modeling of complete multibody systems, including bodies, different
classes for connections between bodies, and external boundary conditions. A BEAST model is a collection of
interdependent instances of any of these classes. These instances are the model components. Moreover, there exist
a hierarchical composition relation between the model components called the model hierarchy.

Additionally some other important concepts are defined for BEAST models:

« Strict naming convention, including namespaces.

e Composition hierarchies by sub-modeling. Several model components can be gathered together into a sub-
model to improve the overall structure of the model, i.e., an additional hierarchical level is introduced.
Several sub-model levels can exists in a BEAST model.

* Modeling and simulation of detailed contacts between bodies.
Modelica [9] is an object-oriented equation-based language for modeling of multi-physics systems. Modelica
uses the concept of object-orientation to bring structure into large physical systems. Some of Modelica’s main
advantages are:

* A complete and standardized object-oriented modeling language.

 Acausal equation modeling.

» Connection associations for interaction modeling.

» A standardized graphical notation is part of the language.

* Availability of graphical model editors.
Several Modelica environments exist which support graphical and textual model design and include a simulation

kernel, e.g., MathModelica [24], Dymola [10] (the Dynamic Modeling Laboratory, not the previous mentioned
Dymola language), and OpenModelica [13].

1336

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

4 Contact modeling and encapsulation for 3D mechanics

When dealing with 3D contact mechanics modeling there are situations where contacts occur between two parts
that are not at the same hierarchical composition level. Contacts between bodies are possible if their surfaces are
accessible to each other, even if the bodies are embedded in other objects from a logical composition point of
view. From a contact 3D modeling point of view all bodies or their surfaces, which are exposed to the outside
environment, must be accessible. Contacts in BEAST therefore have access to any child component at any lower
level in the model hierarchy. Model designers (BEAST users) create the contacts that are of interest for a particular
system analysis and are responsible to avoid the creation of contacts between bodies whose surfaces are not physi-
cally accessible. For instance, contacts between two physically contacting gear-wheels in a gearbox model can be
neglected (or replaced by simpler joints) if they are not of interest for the current system analysis. This is typically
done to improve simulation performance. On the other hand, contacts between two gears that are physically not in
contact could be created by mistake in BEAST. Modelica on the other hand uses a more clean and strict approach in
deep connection modeling. Connections through multiple sub-levels in the model hierarchy require the connector
to be propagated through all sub-levels.

RotationalSurface
Shaft
3
GearWheel GearContactSurfaceSet
GearAxesA Lk~ | >
GearBoxModel Connection
ContactSet
< k>
? GearAxesB
kK> | GearWheel g GearContactSurfaceSet
3
Shaft
RotationalSurface

Figure 4: Simplified BEAST gearbox model with contacts between the gearwheel surfaces. Multiple contact-surfaces
and corresponding contacts are modeled as set-objects.

As an example a BEAST model of a gearbox is shown in Figure 4. The gearbox contains two gearwheel-shafts,
where a gearwheel-shaft is the combination of a shaft and a gearwheel. Connections are defined between the gear-
wheels of the two gearwheel-shafts. Contacts (ContactSet) are defined between the contact-surfaces (GearCon-
tactSurfaceSet) of the two gearwheels. The connection object that contains the contacts is placed directly in the
common parent node, here the GearBoxModel. The BEAST model assembly is based on different factory design
patterns. Any part of the model can be directly referenced. Here is shown an outline of the BML code fora BEAST
gearbox model:

/* The Gearbox top model */
model type=SModel
name=mGearBox

/* The first gearwheel shaft */
model type=SModel
name=mGearWheelShaftA

body type=Disk name=bShaft

/* Shaft data here */
end body;

1337

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

body type=GearWheel
name=bGearWheel
/* BEAST uses certain naming */
/* conventions for surfaces */
/* There are always two contact- */
/* surface sets per gearwheel x/
surface_set type=InvoluteSegSet
name=sFF
end surface_set;
surface_set type=InvoluteSegSet
name=sBF
end surface_set;
end body;
end model;

/* The second gearwheel shaft */
model type=SModel
name=mGearWheelShaftB

body type=Disk name=bShaft
/* Shaft data here */
end body;

body type=GearWheel
name=bGearWheel
surface_set type=InvoluteSegSet
name=sFF
end surface_set;
surface_set type=InvoluteSegSet
name=sBF
end surface_set;
end body;

end model;

connection type=GearGearConnection
from=mGearWheelShaftA‘bGearWheel
to=mGearWheelShaftB‘bGearWheel
/* There are always two contacts */
/* per gearwheel connection */
contact_set type=ConnectBaseSegVSet
from=sFF
to=sFF
end contact_set;
contact_set type=ConnectBaseSegVSet
from=sBF
to=sBF
end contact_set;
end connection;
end model;

One can see that the gearwheel is directly referenced in the connection objects, i.e., from=mGearWheelShaftA ‘bGearWheel

to=mGearWheelShaftB ‘bGearWheel, and the contacts are defined between the gearwheel surfaces, called segments
in BEAST.

A similar, very simplified, model in Modelica could look like this:

connector GearSurfaceSet
// Any code here
end GearSurfaceSet;

model GearWheel

// Gear wheel contact surfaces
GearSurfaceSet con_surfs;

1338

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

end GearWheel;

model GearWheelShaft
GearWheel gearWheel;
Shaft shaft;
// An additional GearSurfaceSet
// instance is used on the
// GearWheelShaft level
// for gearwheel contact-surface
// access
GearSurfaceSet gear_con_surfs;
equation
// We connect the surfaces to make
// them accessable from outside
connect (gear_con_surfs,
gearWheel.con_surfs);
end GearWheelShaft;

model GearBox
GearWheelShaft shaftA;
GearWheelShaft shaftB;
equation
connect(shaftA.gear_con_surfs,
shaftB.gear_con_surfs)
end GearBox;

Surfaces and surface sets are defined as Modelica connectors to allow for connect equations between surfaces
of different bodies, i.c., to be able to model contacts between surfaces. Based on the object-oriented concept of
information hiding, or encapsulation, Modelica puts restrictions on connect equations. That is, to keep a clean in-
terface design Modelica does not allow for connect equations though several hierarchical levels, i.e., the following
is prohibited in Modelica:

connect (shaftA.gearWheel.con_surfs,
shaftB.gearWheel.con_surfs);

To propagate the GearSurfaceSet connectors to the GearBox model level additional GearSurfaceSet connectors
have been added to the GearWheelShafi model. These are internally connected to the GearWheel surfaces to make
them accessible from outside. It is argued that from a multibody system contact point of view this is not a very
good solution because:

1. Inthe most general case it requires to propagate all surfaces that can have contact though all higher levels in
the model hierarchy.

2. It requires adjustment of all classes at higher hierarchical levels if the surface topology changes.

3. It makes class design difficult and error prone.

Note that the latest version of the Modelica multibody library addresses the problem of collision detection [21]
between bodies by defining a global contactData table that that keeps information about bodies states. Collisions
can be computed between any two bodies. Every body needs to be enabled for collision detection. It is then
registered in the global contact-data table. This is a general approach for simple contact detection but not sufficient
for detailed contact analysis because:

1. Detailed surface analysis often requires to split the surface of a body into several surface segments. This is
needed to gain the necessary level of detail.

2. Not all contacts between two bodies have the same properties. Definition of contact properties for a certain
contact between two specific surfaces or surface-segments is often desirable.

3. It is not efficient for detailed, computation intensive, contact calculations. Instead one wants to define the
contacts of interest.

In many mechanical applications all possible contacts are known and can easily been defined. Contacts in BEAST
are therefore part of the model hierarchy. Thus there exist several connection objects — one for each pair of bodies
that might be in contact. BEAST uses a different approach because it puts much more emphasis on detailed contact
analysis. Contact calculations in BEAST are computationally intensive and only contacts of interest are defined in
the multibody system model.

1339

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

Deep connection modeling, or the concept of connecting to objects at a lower hierarchical level, is in contrast to the
Modelica inner/outer concept that allows to reference variables and objects at higher levels in the model instance
hierarchy. One could argue that the deep connection concept conflicts with object-oriented encapsulation, but
encapsulation does not prohibit access through multiple sub-levels in the object hierarchy as long as all interfaces
at all levels are public accessible.

A combination of BEAST and Modelica models is of interest for the authors for different reasons. The main
advantage is the possibility to have combined modeling capabilities, i.e., integrate Modelicas multi-physics capa-
bilities into BEAST models or integrate BEAST components into Modelica models. Also, one could argue, that
the problem of connecting different parts on different hierarchical levels is of more general nature, e.g., not only
contacts in multibody systems are affected but other application areas as well. A more general solution for deep
connections might thus be of interest for other Modelica users. Two possible approaches for extending Modelica
with deep connection modeling capabilities are therefore presented here:

Global connectors that are propagated through all parent levels. This is a special connector type that is accessible
through all higher levels of the model hierarchy.

Connector references that can be used to reference a connector at any hierarchical sub-level.

Global connectors can exist in conjunction with normal connectors to not break the concept of information hiding
for normal connectors. They are accessible through multiple sub-levels by standard naming convention:

globalconnector GearSurfaceSet
// Any code here
end GearSurfaceSet;

model GearWheel
// Gear wheel contact surfaces
GearSurfaceSet con_surfs;

end GearWheel;

model GearWheelShaft
GearWheel gearWheel;
Shaft shaft;

equation

end GearWheelShaft;

model GearBox
GearWheelShaft shaftA;
GearWheelShaft shaftB;
equation
connect (shaftA.gearWheel.con_surfs,
shaftB.gearWheel.con_surfs);
end GearBox;

Graphical modeling is an important aspect of Modelica. Graphical Modelica editors, e.g., MathModelica (Lite) or
Dymola, should present global connectors visually on all higher model levels to simplify modeling. Visualization
on higher levels should also be user selectable, i.c., enable/disable visual propagation of global connectors.

Connector references allow to reference any connector to make it accessible on different hierarchical levels in the
model hierarchy. Reference variables are defined with the keyword reference. Reference variables are used just
like any other variable. Here is the gearbox example:

connector GearSurfaceSet
// Any code here
end GearSurfaceSet;

model GearWheel
// Gear wheel contact surfaces
GearSurfaceSet con_surfs;

end GearWheel;

model GearWheelShaft
GearWheel gearWheel;
Shaft shaft;

equation

end GearWheelShaft;

1340

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

model GearBox
GearWheelShaft shaftA;
GearWheelShaft shaftBj;

reference GearSurfaceSet
con_surfsA(shaftA.GearWheel.con_surfs) ;
reference GearSurfaceSet
con_surfsB(shaftB.GearWheel.con_surfs);
equation
connect(con_surfsA,
con_surfsB);
end GearBox;

This concept is harder to implement from a user interface point of view. One could have a reference browser that
shows the complete model hierarchy where users can pick the connectors that they want to reference in the current
model.

In conclusion one can argue that interface propagations as used in Modelica provides clean interface definitions
with data encapsulation and information hiding. This approach works well for modeling of many systems but
is not sufficient for convenient modeling of multibody contacts where global accessible interfaces are needed.
However, above we briefly demonstrated that simple modifications to the Modelica language would allow modeling
connections through multiple hierarchical levels.

5 Model libraries and model composition

Equation-based object-oriented multi-physics modeling and simulation environments, e.g., Modelica, allow class-
based modeling using a number of object-oriented concepts, e.g., inheritance, encapsulation, and polymorphism.
It is a language-based modeling approach where the class design often is part of the modeling process. Both
pre-defined library classes and user-defined classes can inspected and modified, if needed. However, for many
applications the user just assembles and connects instances of pre-defined library classes to create an application
model, which is immediately instantiated.

On the other hand, specialized mechanical system simulation environments typically work with a set of predefined
classes of objects. Here the underlying class design is hidden for the user, i.e., they are essentially black boxes.
Changing such classes is possible only by modifying the underlying implementation in some programming lan-
guage (e.g. C++, Fortran). For multibody system simulation environments such predefined classes are typically
bodies, connections or joints between these bodies, and system boundary conditions, e.g., external forces. The
modeling process is the assembly of these objects into a simulation model.

5.1 Model composition

Composition hierarchies are used to represent the structure of the system model. For example, a top-level gearbox
object contains a housing and several gearwheel-shafts, where each of the shafts contains several gearwheels and
bearings, etc.

BEAST uses several factory design patterns [8] to assemble the simulation model. The factory pattern allows
instantiation of objects at run-time. Factory based composition implies aggregation relations, see also Figure 5(a),
where the factory is responsible for object instantiation and to create the model hierarchy. Note that there is no
need to create new classes but the model is assembled from predefined classes.

In Modelica a class is a composition of other class instances, see also Figure 5(b). New classes are created, that
possibly extending existing ones, whenever needed during the modeling process. Some people might see the
connection equations in Modelica’s as a weak form of aggregation. But the connection equation does not express
containment.

The main difference between the two approaches is that aggregation together with assembly based on the factory
design pattern allows for ad hoc model composition without the need to define new classes. The BEAST modeling
language (BML), for instance, is used to store BEAST models. A simulation kernel reads the BML file and
composes the model hierarchy on demand using different factories for bodies, segments, etc. This, however,
requires that all possible classes of objects are already defined. Modelica composition hierarchies on the other
hand are based upon class composition hierarchies, i.e., pure composition relations.

To summarize:

* In both cases, the user assembles a model from model components available in libraries, either hardwired
libraries (in the BEAST case) or model libraries defined in the modeling language (in the Modelica case)

1341

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

NSegRing 6SegRing

0 ¢

1.7 6

RotSeg RotSeg

(a) Aggregation re- (b) Composition
lation. relation.

Figure 5: The difference between aggregation and composition in a bearing model. Aggregation relation allows for
variable amount of bodies in a bearing model. Composition relation in Modelica implies a predefined amount of bodies.

* In the BEAST case, the C++ implementation uses aggregation of object instances to create the assembly.

 In the Modelica case, the model editor generates a specialized class (using composition) which contains
all components that the user specified during the assembly phase. This class is instantiated by the model
compiler and run-time system before the simulation.

6 Conclusion

The application of object-oriented techniques to mechanical system modeling has been discussed in this paper. In
3D mechanical systems modeling and design, it is natural to be able to connect components whose surfaces are
externally available. For example, the motor belonging to a car can be externally accessible in the 3D view, even
though it can be regarded as an internal component of the car.

Two modeling approaches have been compared with special reference to Modelica and BEAST. Modelica has a
broad application area, i.e., multi-physics system modeling including multibody system modeling as a special case.
BEAST is used exclusively for mechanical system modeling, i.e., multibody system modeling, with special focus
on detailed contact modeling. The comparison led to the following main observations:

* Modeling of contacts between mechanical parts requires accessible interfaces. Contacts in multibody sys-
tems are possible between any two bodies in the model that do not have any intervening object or boundary
that prevents physical contact. For example, if the surface of a body is exposed to the outside world it can
in principle be connected to any outside body, whereas a body which is hidden within a physical container
(e.g. a box or a sphere) cannot be connected to outside bodies. If the simple solution of making all inter-
faces globally accessible is used, additional (geometrical) checking will be needed to prevent unphysical
impossible contacts.

» Composition hierarchies can be created in several ways. One method of creating object hierarchies is object-
oriented composition where the part objects are declared as belonging to a containing object. More flexible
hierarchy composition can be achieved at runtime, e.g., adding or removing child objects on demand using
flexible data structures such as linked lists to represent the containment relation.

» The modeling process is often very domain dependent. A general target domain of the simulation tool also
requires a general modeling process. For example, general multi-physics modeling requires a high level of
flexibility, i.e., class and interface design, while pure mechanical modeling can utilize predefined classes of
objects.

» Graphical user interfaces are often domain dependent. For example, regarding 3D mechanical system mod-
eling a user interface with support for three dimensional visual representations of the complete system is
desirable.

The main difference, however, is data encapsulation in conjunction with contact modeling. Modelica requires strict
interfaces with encapsulation of internal components, whereas BEAST allows connections to internal components
which are visible in a 3D view, i.e., all bodies or their surfaces, which are exposed to the outside environment,
must be accessible. Contacts in BEAST therefore have access to any child component at a lower level in the

1342

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

model hierarchy. Model designers (BEAST users) create the contacts that are of interest for a particular system
analysis and are responsible to avoid the creation of contacts between bodies whose surfaces are not physically
accessible. Modelica on the other hand uses a more strict approach in deep connection modeling. Connections
through multiple sub-levels in the model hierarchy require the connector to be propagated through all sub-levels.

Finally, different solutions have been briefly presented and discussed (in the form of possible Modelica extensions)
to combine the advantages of both approaches, these are:

Global connectors that are propagated through all parent levels. This is a special connector type that is accessible
through all higher levels of the model hierarchy.

Connector references that can be used to reference a connector on any hierarchical sub-level.

7 References

[1] Dahl, O.J. and Nygaard, K.: How Object-Oriented Programming Started, Dept. of Informatics, Univer-
sity of Oslo, http://heim.ifi.uio.no/ kristen/FORSKNINGSDOK MAPPE/F OO _start.html

[2] J. Rumbaugh and M. Blaha and W. Premerlani and F. Eddy and W. Lorensen: Object Oriented Modeling
and Design, Prentice-Hall International Editions, 1991

[3] G.Booch: Object-Oriented Analysis and Design with Applications, Addison Wesley Professional, 1994

[4] L. Jacobson: Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley
Professional, 1992

[5] M. Fowler: UML Distilled: A Brief Guide to the Standard Object Modeling Language, Addison-Wesley
Pub. Co., 2003

[6] Joel J. Luna: Hierarchical Relations in Simulation Models, Proceedings of the 1993 Winter Simulation
Conference

[7] R. Sinha and V. Liang and C. Paredis and P. Khosla: Modeling and Simulation Methods for Design
of Engineering Systems, Journal of Computing and Information Science in Engineering, March 2001,
Volume 1, Issue 1, pp. 84-91

[8] E. Gamma and R. Helm and R. Johnson and J. Vlissides: Design Patterns - Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995

[9] P. Fritzson: Object-Oriented Modeling and Simulation with Modelica 2.1, Wiley-Interscience, 2004

[10] H. Elmqvist et al: Dymola User’s Manual - Version 5.0a Dynasim AB, 2002

[11] Fritzson, P. and Nordling, P.: Adaptive Scheduling Strategy Optimizer for Parallel Rolling Bearing Sim-
ulation, HPCN Europe ‘99, Amsterdam, April 1999

[12] Stacke, L-E. and Fritzson, D. and Nordling, P.. BEAST—a rolling bearing simulation tool, Proc. Instn
Mech. Engrs, part K, Journal of Multi-body Dynamics, 1999,

[13] Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrom, Adrian Pop, Levon Saldamli, and David
Broman: The OpenModelica Modeling, Simulation, and Software Development Environment., In Simu-
lation News Europe, 44/45, December 2005. See also: http://www.openmodelica.org.

[14] P. Fritzson, and D. Fritzson: Object-oriented Mathematical Modelling Applied to Machine Elements,
Computers & Structures, Vol. 51, No. 3, pp 241-253, 1994

[15] S. McMillan, and D.E. Orin, and R.B. McGhee: A Computational Framework for Simulation of Under-
water Robitic Vehicle Systems, Journal of Autonomous Robots

[16] J.T. Cross, and 1. Masters, and R.-W. Lewis: Why you should consider object-oriented programming
techniques for finite element methods, International Journal of Numerical Methods for Heat & Fluid
Flow, Vol. 9, No. 3, 1999

[17] M. Otter, and H. Elmquist, and F.E. Cellier: Modelling of Multibody Systems with the Object-Oriented
Modeling Language Dymola, “Nonlinear Dynamics”, Vol. 9, pp. 91-112, 1996

[18] D. Fritzson, and P. Fritzson, and L. Viklund, and J. Herber: Object-Oriented Mathematical Modelling —
Applied to Rolling Bearings, In Proc. of SCAFI-92, Amsterdam, Nov 5-6, 1992.

[19] D. Zimmer and E. Cellier: The Modelica Multi-bond Graph Library, Proceedings of the 5:th Interna-
tional Modelica Conference, Vienna, Austria, September 4-5, 2006

[20] M. Otter and H. Elmqvist and S.E. Mattsson: The New Modelica MultiBody Library Proceedings of the
3:rd International Modelica Conference, Linkoping, Sweden, November 3-4, 2003

[21] M. Otter and H. Elmqvist and J. Diaz Lépez: Collision Handling for the Modelica Multibody Library,
Proceedings of the 4:th International Modelica Conference, Hamburg, Germany, March 7-8, 2005

[22] P. Fritzson, L. Viklund, J. Herber, and D. Fritzson: Industrial application of object-oriented mathemati-
cal modeling and computer algebra in mechanical analysis., Technology of Object-Oriented Languages
and Systems - TOOLS 7, pages 167-181. Prentice Hall, 1992

[23] Modelica Association: Modelica - A Unified Object-Oriented Language for Physical Systems Modeling,
Language Specification, Version 3.0. 189 pp. Published at www.modelica.org. Sept 5, 2007.

[24] MathModelica: http://www.mathcore.com/products/mathmodelica, Mathcore AB

[25] Simantics — software platform for modelling and simulation: Attps://www.simantics.org

1343

