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Abstract. Understanding the molecular basis of stem cell differentiation programs is one of the
grand unmet challenges facing modern cell-biology. In this study, we integrated computational and
experimental network analysis tools to unravel the response of HL-60 human myeloblastic leukemia
cells to Retinoic Acid (RA). HL-60 is an uncommitted precursor cell-line that is responsive to RA
signals. Thus, HL-60 is an archetype model to study the molecular architecture of human differentiation
programs. Our initial studies have focused on the role of the BLR1 receptor in the transduction of
RA signals. BLR1, a G-protein coupled receptor expressed following RA exposure, is required for
RA-induced cell-cycle arrest and differentiation and leads to atypical persistent MAPK signaling. A
dynamic mathematical model of the molecular programs governing RA induced cell-cycle arrest and
differentiation was formulated and tested against BLR1 wild-type (wt), knock-out and knock-in HL-
60 cell-lines with and without RA. The current HL-60 model architecture described the dynamics of
729 proteins and protein complexes interconnected by 1356 interactions. An ensemble strategy was
used to compensate for uncertain model parameters. Consistent with previous experimental studies,
the initial HL-60 model showed up-regulation of BLR1 expression following RA exposure along with
sustained MAPK activation. The initial simulation studies led to several testable structural linkages
between BLR1 expression and MAPK activation. When taken together, our modeling efforts have
established a prototype organization the differentiation program in HL-60. BLR1 acts as part of a feed-
forward control element which drives its own expression and that of other components required for
differentiation. More broadly, we have demonstrated that modeling of molecular programs can help
prioritize experimental directions and expand current biological knowledge despite model uncertainty.

1 Introduction
Understanding the molecular basis of stem cell proliferation and differentiation programs is one of the grand unmet
challenges facing molecular cell-biology. If these programs could be manipulated at a granular level, advanced
stem cell therapies could be developed for the treatment of a spectrum of human cancers, spinal cord injuries
and neurodegenerative disorders. However, the fine-tuned control of proliferation and differentiation programs in
complex embryonic and adult stem cells is currently not possible.

In this study, we constructed and analyzed the response of HL-60 human myeloblastic leukemia cells to envi-
ronmental stimuli (Figure 1). HL-60 is an archetype in-vitro model studied since the 1970’s [7, 5, 23]. HL-60
remains a durable experimental model because it can undergo myeloid or monocytic differentiation and G0 arrest,
making it one of the few immature precursor cell lines that is uncommitted with respect to differentiation lineage.
Retinoic Acid (RA) or DMSO cause G0 arrest and myeloid differentiation in HL-60, whereas 1,25-dihydroxy
vitamin D3 (D3) or sodium butyrate causes arrest with monocytic differentiation. The onset of G0 arrest and ter-
minal differentiation is slow requiring ∼ 48 hr of treatment during which HL-60 cells undergo ∼ 2 division cycles
[30, 26, 24, 27]. The 48 hr treatment period segregates into discernible halves. First, treatment with either RA or
D3 causes a precommitment state where cells are primed to differentiate without lineage specificity. Growing cells
in bromodeoxyuridine for one cell cycle also results in this precommitment priming [23]. Cells remain primed
even as they continue to proliferate with RA, D3 or BUdR removed. Late in the priming period, RA (or D3) drives
MEK-dependent activation of the ERK2/MAPK pathway [32, 33, 13, 22]. Elevated MAPK signaling persists until
cells G0 arrest and terminally differentiate. If MEK is blocked, ERK2 fails to activate and HL-60 does not arrest
or differentiate. Interestingly, expression of a highly mutated polyoma middle T antigen, Δ205-214, also causes
ERK2 activation and priming. After HL-60 has been primed, a second treatment with RA or D3 causes arrest and
myeloid or monocytic differentiation, respectively. The kinetics of arrest and differentiation for a RA/D3 sequence
is the same as continuous exposure to D3, and likewise G0 arrest and differentiation for cells treated with a D3/RA
sequence is the same as cells continuously exposed to RA. Thus, priming by RA is lineage non-specific and equiv-
alent to priming by D3. Activation of both RAR and RXR is necessary for RA induced G0 arrest, MAPK signal
activation [25, 2, 29] and myeloid differentiation [33, 13, 22, 3].

RA-induced MAPK signaling, which is slow and persistent unlike the prototypical growth factor-induced mito-
genic signal, is not well understood. During priming RA causes the transcriptional up-regulation of the BLR1
(Burkitt’s Lymphoma Receptor-1) receptor. BLR1, also known as CXCR5, is a putative serpentine heterotrimeric
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Figure 1: Schematic of the response of HL-60 to Retinoic Acid (RA). RA signals are intercepted by a family of
RAR/RXR nuclear receptors which in turn drive the expression of genes with RARE promoter elements. One key
RA-regulated protein is BLR1. BLR1 is a transmembrane surface receptor that is thought to be a G-protein coupled
receptor. BLR1 expression, upregulated by RA, drives an atypical sustained MAPK signal which in turn activates the
expression of genes required for the execution of the cell-cycle arrest and differentiation programs.

G-protein-coupled receptor, with a sequence similar to IL-8 receptors [9], that was first discovered in a screen
for differentially expressed genes that conferred metastatic capability to human B-cell lymphomas [9, 10]. BLR1
expression in human was originally found restricted to mature resting B cells [9] and a subset of T-helper memory
cells [11],suggesting initially that it was a lymphocyte-specific chemokine receptor family member. We identified
BLR1 as an early RA (or D3)-inducible gene in HL-60 cells using differential display [15, 3], suggesting it had a
broader function than lymphocyte regulation. Over expression of BLR1 in HL-60 cells enhanced ERK2 activation
in both RA-untreated and treated cells and accelerated RA- and D3-induced differentiation and G0 arrest. Inhibit-
ing ERK2 activation also inhibited the enhanced differentiation and arrest conferred by BLR1. Thus, RA-induced
BLR1 expression appears to contribute to ERK2 activation and propulsion of induced differentiation and G0 arrest.
Studies of the BLR1 promoter [20] identified a 5’ segment approximately 1 kb from the transcriptional start that
conferred RA responsiveness. Footprinting, EMSA and ChIP identified a novel 17 bp RARE consisting of two
GT boxes which bound RAR and RXR in a ligand dependent fashion. This binding resulted in assembly of a
complex consisting of Oct1, NFATc3 and CREB2 at this novel GT box RARE. The Oct1, NFATc3 and CREB2
bound their cognate sites 3’ of the GT box RARE, but were not recruited into the complex at the GT-box RARE
until addition of RA. The CREB, while necessary for assembly and transactivation, dissociates subsequently from
the complex and its consensus sequence. Thus, the model is that RA causes RAR and RXR to bind the GT-boxes,
and this recruits Oct1, NFATc3, and CREB2, which are tethered downstream at their consensus sequences, into the
complex to form a transcriptionally active complex with subsequent CREB2 dissociation. Surprisingly two canon-
ical RAREs found in proximity did not bind RAR or RXR and were dispensable for RA-induced transcriptional
activation. RA thus directly transcriptionally activates BLR1, and the action of RA can now be followed from this
receptor to downstream effects on signaling, transcription factor activation, gene expression, cell cycle arrest and
differentiation.

The working hypothesis of our modeling studies is that the networks mediating the response of HL-60 to RA
can be described as a System of Systems (SoS) i.e., a composite network composed of interacting subsystems.
We have begun constructing and identifying a library of subnetwork models to be used for the construction of
the HL-60 composite model. Every submodel in our library employs mass action kinetics to describe the rate
of protein-protein and protein-DNA interactions. The mass action formulation, while expanding the dimension
of the models, regularizes the mathematical structure, making it amenable to automatic generation of the model
equations and analytical versions of the Jacobian and matrix of partial derivatives of the mass balances with respect
to the model parameters (both of which are required for large-scale sensitivity analysis). Mass-action kinetics are
also conceptually simple and reduce the unknown parameters to only three types, an association, dissociation or
catalytic rate constant. Thus, we increase the dimension while simultaneously introducing mathematical structure
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that ultimately reduces the complexity of model development and analysis. A second important distinction of
the proposed work is that we do not have a single set of parameter values. Rather, library submodels have an
ensemble of possible parameter sets selected to satisfy an error threshold between simulated and measured data.
We expect that simulating over a parameter ensemble, when compared with a single best fit parameter set, will
generate models (and predictions) more robust to parametric uncertainty. Our ensemble strategy was inspired by
the previous work of Battogtokh et al. [4] and Sethna and coworkers [6].

2 Materials and Methods
Formulation and solution of the model equations. The HL-60 model was formulated as a set of coupled
Ordinary Differential Equations (ODEs):

dx
dt

= S · r(x,p) x(to) = xo (1)

The symbol S denotes the stoichiometric matrix (729×1356). The quantity x denotes the concentration vector of
proteins or protein complexes (729× 1). The term r(x,p) denotes the vector of reaction rates (1356× 1). Each
row in S described a protein while each column described the stoichiometry of network interactions. Thus, the
(i, j) element of S, denoted by σi j, described how protein i was involved in rate j. If σi j < 0, then protein i was
consumed in r j. Conversely, if σi j > 0, protein i was produced by r j. Lastly, if σi j = 0, there was no protein i in
rate j.

We assumed mass-action kinetics for each interaction in the network. The rate expression for protein-protein
interaction or catalytic reaction q:

∑
j∈{Rq}

σ jqx j → ∑
p∈{Pq}

σpqxp (2)

was given by:

rq (x,kq) = kq ∏
j∈{Rq}

x
−σ jq
j (3)

The set
{

Rq
}

denotes reactants for reaction q. The quantity
{

Pq
}

denotes the set of products for reaction q. The
kq term denotes the rate constant governing the qth interaction. Lastly, σ jq,σpq denote stoichiometric coefficients
(elements of the matrix S). We treated every interaction in the model as non-negative. All reversible interactions
were split into two irreversible steps. The mass-action formulation, while expanding the dimension of the initiation
model, regularized the mathematical structure. The regular structure allowed automatic generation of the model
equations. In addition, an analytical Jacobian (A) and matrix of partial derivatives of the mass balances with respect
to the model parameters (B) were also generated. Mass-action kinetics also regularized the model parameters.
Unknown model parameters were one of only three types, association, dissociation or catalytic rate constants.
Thus, although mass-action kinetics increased the number of parameters and species, they reduced the complexity
of model analysis. In this study, we did not consider intracellular concentration gradients. However, we accounted
for membrane, cytosolic and nuclear proteins by explicitly incorporating separate protein species.

Estimation of an ensemble of model parameters. An initial set of model parameters, p0 was chosen to replicate
the training data taken from the literature [21]. The training data consisted of time-resolved MAPK and BLR1
western and northern blot data taken following RA addition to wild-type HL-60 cells. The difference between the
training data associated with species j, x̂i, j, and simulation results associated with species j for parameter set k,
x(pk)i, j, was quantified by the normalized mean squared error, η :

η =
1

N∑i, j

(x̂i, j −β jxi, j)
2

σ̂2
i, j

, (4)

The sum was carried out over all species j and observations i. The quantity N is the total number of observations
and σ̂ denotes the corresponding experimental error. If no experimental error value was reported we assumed we
assumed 10% of the reported observation. In cases where quantification of the stimulus or observation was unclear
an augmented error of 20%-100% was applied to compensate for the added uncertainty. The scaling factor β j was
applied to the simulation results to account for training data only known to a multiplicative constant. The value of
β j was chosen to minimize the normalized squared error for a given experiment and species j [6]:

β j =
∑i(x̂i, jxi, j/σ̂2

i, j)

∑i(xi, j/σ̂i, j)2
. (5)

Because of the scaling factor, the concentration units on simulation results was arbitrary (consistent with the
arbitrary units associated with the training data). There was insufficient training data to properly constrain the
1356 model parameters. To account for parametric uncertainty an ensemble of parameter sets was generated using
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a Monte Carlo approach similar to that of Battogtokh et al. [4]. Consider a set of model parameters pi. Let the
likely-hood, φ(pi), of pi be defined as:

φ(pi) ≡ exp{−η(pi)

α
}, (6)

where η(pi) denotes the simulation error associated with parameter set pi. The quantity α is a parameter used to
tune the rate of acceptance. Further let the acceptance probability, P(pi+1′|pi), of a new parameter set, pi+1′, be
φ(pi+1′)

φ(pi)
if φ(pi+1′) < φ(pi) and 1 otherwise. P corresponds to the probability that pi+1′ be accepted as pi+1 given

pi, for consecutive Monte Carlo steps. Subsequent sets of parameters are generated by applying a small additive
random perturbation in log space:

logpi+1′ = logpi +N (0,ν) (7)

where N (0,ν) is a normally distributed random number with zero mean and variance ν . The perturbation was
applied in log space to account for the large variation between different parameters and to ensure that parameter
values were always > 0.

Monte Carlo trajectories were generated starting from p0 where ν =0.05 or 0.1 and α =1 or 0.5. The autocorre-
lation function of each trajectory was calculated. The number of Monte Carlo steps between parameter sets which
were added to the ensemble was taken to be the number of steps after which the autocorrelation function dropped
to 95% of its initial value. This was done to ensure independence between sets in the ensemble. To compensate for
noise in the autocorrelation function an exponential fit was applied. The final ensemble contained 870 parameter
sets. Of the approximately 1500 parameters (1356 kinetic constants plus unspecified initial conditions), 13% (200
of 1500) had a Coefficient of Variation (CV) of 50% or less while 80% had a CV of 100% or less. Thus, the
training data poorly constrained individual parameter values and emphasized the benefit of applying an ensemble
approach.

Sensitivity analysis of the HL-60 network. Overall State Sensitivity Coefficients (OSSC) were used to esti-
mate which structural elements of the HL-60 network were sensitive [18]. OSSC values were determined by first
calculating the first-order sensitivity coefficients at time tk:

si j (tk) =
∂xi

∂ p j

∣∣∣∣∣
tk

(8)

First-order sensitivity coefficients were computed by solving the matrix differential equation:

ds j

dt
= A(t)s j +b j (t) , s j(t0) = 0 j = 1,2, . . . ,P (9)

In Eqn. 9, j denotes the parameter index, P denotes the number of parameters in the model, A denotes the Jacobian
matrix, and b j denotes the jth column of the matrix of first-derivatives of the mass balances with respect to the
parameter values (denoted by B). An analytical Jacobian and matrix of first-derivatives of the mass balances w.r.t
the parameters:

A =
∂ fx

∂x

∣∣∣∣∣
(x∗,p∗)

B =
∂ fx

∂p

∣∣∣∣∣
(x∗,p∗)

(10)

were generated from the model equations. The quantity fx = S · r(x,p) and (x∗,p∗) denotes a point along the
unperturbed model solution. The sensitivity equations required that we solve the model equations to evaluate
the A and B matrices. Thus, we formulated the sensitivity problem as an extended kinetic-sensitivity system of
equations [8]: (

ẋ
ṡ j

)
=

[
S · r(x,p)

A(t)s j +b j (t)

]
j = 1,2, . . . ,P (11)

where ẋ = dx/dt and ṡ j = ds j/dt. We solved the kinetic-sensitivity system for multiple parameters in a single
calculation using the LSODE routine of OCTAVE (www.octave.org). The first-order sensitivity coefficients were
then used to calculate the OSSC value for parameter j:

O j (t) =
p j

Ns

(
NT

∑
k=1

Ns

∑
i=1

[
1

xi

∂xi

∂ p j

∣∣∣∣∣
tk

]2)1/2

(12)

The terms NT , Ns denote the number of time points considered and the state dimension of the model, respectively.
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Figure 2: Simulations over an initial parameter ensemble (N = 876) captured the sustained activation of MAPK in HL-60
cells following RA exposure (1μM). In each case dashed lines denote the mean simulated value over the ensemble while
the shaded regions denote one ensemble standard deviation.A: Comparison of experimental and simulated concentration
profile for the BLR1 mRNA following RA exposure. No BLR1 expression was predicted before RA exposure. BLR1
expression was observed approximately 9-12 hr after RA exposure. B: Time profile of phosphorylated RAF1 activation
following RA exposure. C: Simulated MEK activation following RA exposure. D: Simulated phosphorylated ERK
following RA exposure. The northern and western blots were reproduced from Wang and Yen [21].

Monte-carlo coupling analysis of the HL-60 architecture. Coupling coefficients of the form:

α
(
i, j, to, t f

)
=

(∫ t f

to
xi (t)dt

)−1 (∫ t f

to
x( j)

i (t)dt
)

(13)

were calculated to understand the regulatory connectedness of the HL-60 network. The coupling coefficient
α

(
i, j, to, t f

)
is the ratio of the integrated concentration of a network output in the presence (numerator) and

absence (denominator) of structural or operational perturbation. Here t0 and t f denote the initial and final sim-
ulation time respectively. i and j denote the indices for a reference species and a perturbed species respectively.
If α

(
i, j, to, t f

)
> 1, then the perturbation increases the output concentration. Conversely, if α

(
i, j, to, t f

) � 1 the

perturbation decreases the output concentration. Lastly, if α
(
i, j, to, t f

)∼ 1 the perturbation does not influence the
output concentration.

3 Results and Discussion
To test the SoS hypothesis for the HL-60 network, we formulated a draft HL-60 model from literature and our
identified subnetwork library. We tested the proof-of-concept model against BLR1 wild-type (wt), knock-out and
knock-in cell-lines in the presence and absence of RA over an ensemble of parameters (N = 870) generated by
comparing model simulations with western and northern blot data taken from the literature [21]. The initial HL-60
architecture consisted of a modified MAPK module [1, 12], G0/G1-cell-cycle module [16], a Calcium/Gq-protein
cascade module and the translation initiation module [17]. The model describes the regulated expression of 17
marker proteins (BLR1, Oct1, CREB2, ETS, BRN, IRF, SRPK, pRb, RhoGDI, p47Phox, CD45, EIF2AK, SIIIp15,
AAF, Stat5b, XRE and SAP). Regulated expression followed a two-operator site promoter template. Activated
transcription factors were assumed to reversibly bind operator site 1 (O1) which then allowed the recruitment
of RNApII to operator site 2 (O2). Transcription of BLR1 was modeled by explicitly describing the reversible
assembly of the CREB2:Oct1:NFATc3 complex and dissociation of CREB2 to activate the complex at O1 and
then the recruitment of RNApII at O2. The expression of the remaining un-regulated model proteins was fixed by
the initial condition of the simulation. mRNA transcripts were transported from the nucleus assuming saturable
transporters analogous to exportin-5. Once in the cytosol mRNA was translated using the translation module.
Missing connectivity between pathway modules was estimated from a manual review of >100 publications and
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Figure 3: Simulations of Rb and p47Phox expression in HL-60 cells following RA exposure were qualitatively consistent
with observations. In all cases the dashed line denotes the mean simulated value over the parameter ensemble while the
shaded area denotes one ensemble standard deviation. A: Simulated profile of the Rb protein as a function of time
following RA exposure (1μM). Decreased Rb protein expression was consistent with western blot analysis (inset) 24 hr
following RA addition and previous studies [31]. B: The p47Phox protein was used as an early differentiation marker in
HL-60. The model qualitatively captured the up-regulation of p47Phox following the addition of RA. Inset: Western blot
analysis at 24 and 48 hr following RA exposure confirms the upregulation of p47Phox following RA treatment. These
data were consistent with previously reported studies [28].

from the STRING. NETWORKIN was used to estimate missing kinase-target relationships. The 729 Ordinary
Differential Equations (ODEs) of the HL60 model were machine generated using UNIVERSAL [19]. In addition
to the model code, all code required to perform sensitivity analysis was also machine generated. The HL-60 model
considered here had 1356 kinetic parameters and 126 unspecified initial conditions.

Initial HL-60 model simulations revealed connectivity between MAPK and BLR1. As a proof of concept,
simulations of MAPK activation following RA treatment in BLR1 wt, knock-out and knock-in HL-60 cells were
compared with previous data [21]. The initial HL-60 network model was able to show up-regulation of BLR1
expression following RA exposure along with generation of RAFp, ERKp and MEKp (Figure 2). The model
was also able to qualitatively describe the linkage between BLR1 expression following RA exposure and MAPK
activation in wt, blr1-/- and blr1+/+ HL-60 cells (data not shown). Both the qualitative trends and relative time
scales of the initial simulations were consistent with observations over the parameter ensemble. Assembling the
modular model components led to several testable linkages between BLR1 expression and MAPK. The route active
in the initial simulations was Gq-protein activation of PKC via PLCγ and DAG. BLR1 expression was predicted
to drive IP3 and DAG formation through coupling with Gq-protein and PLCγ activation. In the model DAG was
linked with the activation of Protein Kinase C (PKC) by helping recruit it to the plasma membrane. PKC has been
shown to phosphorylate both RAS and RAF leading to MAPK activation [14]. The BLR1-PKC connection could
explain the activation of ERK following RA exposure but not the dependence of BLR1 expression upon MAPK
activity. To this question, ERKp was found to activate the NFATc3 protein, a component in the transcription factor
complex driving BLR1 expression. This connection could explain the dependence of BLR1 expression on RAF
(data not shown).

The HL-60 model only partially captured expression shifts driving the arrest and differentiation program following
RA exposure (Figure 3). The Rb and p47Phox proteins were used as markers for the arrest and differentiation
programs, respectively. Simulations of the expression of these key markers following the addition of RA showed
that the model qualitatively captured the expected shifts. Rb expression decreased following RA exposure consis-
tent (Figure 3A). However, the onset of the differentiation program indicated by p47Phox expression was not well
constrained (Figure 3B). The cell-cycle arrest program was directly driven by MAPK activation which was well
described by the model. Thus, the tight distribution on the Rb simulations over the parameter ensemble indicated
that parameters controlling Rb expression were likely well constrained. Conversely, the wide distribution of the
p47Phox trajectory was likely caused by a lack of sufficient training data.
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Figure 4: Initial sensitivity and coupling analysis predicts critical linkages and proteins. A: Scaled Overall State Sen-
sitivity Coefficients (OSSCs) calculated using the initial best fit parameter set in the presence of RA. Formation of the
BLR1 transcription factor complex (CREB-NFATc3-Oct1) and MAPK activation were estimated to be critical compo-
nents. The OSSC value for each of the network parameters was scaled by the maximum OSSC value (CREB2 binding).
B: Coupling analysis for six marker proteins computed over a sparse sampling of the parameter ensemble (N = 10). The
family of mean coupling coefficients were analyzed using Singular Value Decomposition (SVD).

Sensitivity and coupling analysis of the HL-60 model revealed critical model parameters. Sensitivity analy-
sis was conducted to better understand which parameters and interactions in the HL-60 model were critical (Figure
4). As a proof-of-concept, we preformed sensitivity and coupling analysis of wt HL-60 in the presence of RA.
Overall State Sensitivity Coefficients (OSSC) for each of the model parameters were calculated using the best
initial parameter set (parent set used in the ensemble calculations). The model and sensitivity equations were
solved simultaneously using the LSODE routine of Octave (www.octave.org). The most sensitive model parame-
ters involved CREB2 binding in the BLR1 transcription factor complex and components of MAPK activation. In
addition, several elements of the Gq-protein activation cascade were found to be sensitive. Interestingly, of the
sensitive MAPK cascade interactions, Raf activation and deactivation were found to be the most important (Figure
4A). Coupling coefficients computed between six model proteins (ERKpp, BLR1, p47Phox, p47Phox-P, Rb and
Rb-P) and the knockdown of 97 model proteins were computed using a sparse sampling of the parameter ensemble
(N = 10). The mean coupling for each of the marker proteins was used to construct a 97 × 6 coupling array which
was then analyzed using the Singular Value Decomposition (SVD) function of Matlab (The Mathworks, Natick
MA). Coupling analysis identified critical hubs in the network that amplified or destroyed the marker trajectory.
For example, ERKpp was found to be positively coupled to deletion of phosphates acting on Raf and Mek (Pase
1 and Pase 2, respectively). This finding was consistent with the sensitivity results. Conversely, all markers were
found to be critically coupled to the deletion of eI4FE and other translation components (near the origin of Figure
4B). When taken together, the results support the application of sensitivity and coupling analysis using ensembles
of mechanistic models to robustly rank-order the importance of proteins and interaction in molecular networks.
However, the coupling and sensitivity results were preliminary. More parameter sets should be sampled to make
sure our conclusions were robust to the choice of parameters.

Honor, Loyalty and Commitment
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