
Model Invalidation and System Identification of

Biochemical Reaction Networks

Steffen Borchers1,2, Philipp Rumschinski1, Sandro Bosio3, Robert Weismantel3, Rolf Findeisen1

1 Department of Systems Theory and Automatic Control University of Magdeburg, Germany
2 Max Planck Institute for Dynamic of Complex Technichal Systems, Magdeburg, Germany

3 Department of Mathematical Optimization, University of Magdeburg, Germany

Corresponding author: R. Findeisen, Department of System Theory and Control, University of
Magdeburg, Germany; rolf.findeisen@ovgu.de

Abstract. In systems biology, uncertainties in reaction mechanisms and system structure
often result in competing hypotheses. Current approaches to discriminate between model
alternatives are often inappropriate for biochemical reaction networks. This is because often
only noisy measurements and sparse experimental data are available.

In this work a new method for model invalidation, based on the certification of non-existence
of a feasible parametrization, is presented. This is achieved by reformulating the model inval-
idation task into a feasibility problem. As shown, due to the polynomial structure of many
biochemical reaction systems, it is possible to relax the non-convex feasibility problem into a
semidefinite program. This allows to obtain conclusive results on model invalidity as well as
to estimate model parameters and states.

Our framework allows us to consider the arising difficulties posed by biochemical reaction
networks by taking the polynomial structure of the dynamics and model outputs into account.
An application example of the approach to a well-known biological reaction scheme is also
presented, for which we show that it is possible to discriminate between the Michaelis-Menten
and the Henri kinetics, and to estimate parameters.

1 Introduction
An important modeling issue in systems biology is system identification, comprising both estimation
of model parameters and model structure analysis. System identification can be very difficult, due to
uncertainties of the involved reaction mechanisms leading to concurring structural hypotheses. Moreover,
kinetic parameters can not be determined experimentally and may therefore be completely unknown.
To obtain a model that captures the essential behavior of the process under study, it is important to
discriminate between the structural possibilities and to estimate model parameters.

Model validation consists in checking whether a model can represent a given observed experimental
behavior. As it is impossible to prove model validity (see e.g. [8]), the purpose of model validation
techniques is rather to invalidate a model by proving inconsistency of the model hypotheses with a given
set of experimental data, or to give only inconclusive results, e.g. via simulation.

A model invalidation framework using barrier certificates which are functions of state-parameter-time
has been proposed in [8]. These barriers separate possible model trajectories and measurement data,
allowing to conclusively invalidate a model. Finding such barrier certificates however is a nontrivial task.
Moreover, the existence of a suitable barrier function cannot be guaranteed for any arbitrary invalid
models.

Our work is based on the work of [4], which introduced a semidefinite programming approach for parame-
ter estimation based on stationary measurements. By using a different class of infeasibility certificates for
polynomial reaction mechanisms, similar to the one proposed in [12] for sensitivity analysis, our approach
allows us to consider a large class of nonlinear systems subjected to bounded, but possibly large, param-
eter uncertainties and measurement errors. Competing model alternatives can thus be discriminated by
proving inconsistency with the available data for (some of) the wrong alternatives.

The approach presented here also allows for model parameter and state estimation. By invalidating
respectively parameter and state space subsets, it is possible to classify parameter and state space regions
into “feasible” regions, consistent with the measurements, and “infeasible” regions, for which the given
measurements cannot be produced.

The paper is structured as follows. In Section 2 the considered system class is introduced. In Section 3 the
invalidation setting and the basic results using feasible parameter sets are presented. In Section 4 we show
how to estimate feasible parameters using semidefinite programming, and in Section 5 the approach is
extended to consider feasible states estimation. Examples of model invalidation and parameter estimation
are presented in Section 6, and Section 7 summarizes and discusses the approach.
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2 Considered System Class
Biochemical reaction networks are commonly described by the occurring reactions in the form

α1S1 + · · ·+ αns
Sns

→ β1T1 + · · ·+ βnp
Tnt

,

where a set of ns substrates Si is transformed into a set of nt products Tj , with factors αi, βj defining
the stoichiometric relations of the participating compounds.

If spatial and stochastic effects are neglected, such biochemical reaction networks can be expressed as
ordinary differential equations. The dynamic models can then be defined considering the reaction fluxes
and the corresponding balance equations as

ẋ = Nν(x, p), (1)

where x ∈ X ⊂ Rnx denotes the vector of concentrations, p ∈ P ⊂ Rnp the vector of kinetic parameters,
and ν the vector of fluxes. The stoichiometric matrix N is built up from the factors αi, βj . We assume
the given sets X and P to be bounded.

Describing this model with a suitable discretization method we obtain the following discrete-time model

Σ : x[k + 1] = g(x[k], p), (2)

where x[k] ∈ X denotes the vector of state variables at the time index k ∈ N. We assume that a
measurement of the state obtained at time k, if taken without measurement errors, is given by the model
output equation

y[k] = h(x[k], p), (3)

with y[k] ∈ Rny .

There are many possibilities to describe the reaction fluxes (see e.g. [2]), including the law of mass action,
Hill kinetic, and Monod kinetic, the first approach being one of the most frequently used. Hereby, the
reaction fluxes are proportional to the substrates, resulting in a system (1) with polynomial right-hand
side. As our approach takes advantage on this special structure, we focus on mass action models.

In the remainder we consider g(·, ·) and h(·, ·) to be polynomial functions.

Remark 1 The setting can be extended to rational functions, as well as to consider model inputs.

Let an experiment be performed with the real process, and let a sequence of measurements

Y = {Yk1 ⊂ Rny , . . . , YkN
⊂ Rny},

be taken at times k1, . . . , kN . In general, the measurements are considered to be sets. This allows to
address measurement errors by this concept, whereas in this case the measurement sets are intervals. We
assume that each set Yki

contains the ideal measurement point h(x[ki], p), for i ∈ {1, . . . , N}.

Based on this setup, the model invalidation problem can be formulated as follows:

Given a model Σ as in (2), a parameter set P , and a measurement sequence Y = {Yk1 , . . . , YkN
}, find a

feasible parametrization for Σ, i.e., a parameter p ∈ P for which Σ can produce a trajectory for which
x[k] ∈ X for every k ∈ {1, . . . , kN} and y[ki] ∈ Yki

for every i ∈ {1, . . . , N}, or a proof that none exists.

Our approach to prove model invalidity is based on a certificate of non-existence of feasible parametriza-
tion. Remarkably, this is achieved without direct simulating nor computing the solution of the model.

3 Model Invalidation and Parameter Estimation
The key idea is to reformulate the invalidation problem as a feasibility problem. While taking into account
the measurements and parameter bounds as constraints, infeasibility of the feasibility problem can be
certified for the considered system class as shown later on. Thus, model invalidity can be proved.

Two Measurements. Let us start considering the simple case of two measurements Yk1 ,Yk2 taken at
distinct time indexes k1 < k2, and let m = k2 − k1. The feasible parameter set corresponding to Yk1 ,Yk2

is defined as

Pk1,k2 = {p ∈ P : ∃x1, x2 ∈ X | x2 = gm(x1, p), h(x1, p) ∈ Yk1 , h(x2, p) ∈ Yk2},

where gm(·, ·) denotes the composition of g m-times. We can then state the following necessary condition
for model validity:
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Condition 1 (Model Validity): Given a model Σ as in (2), a parameter set P, and two measurements
Yk1 ,Yk2 , Σ can be valid for the system under study only if Pk1,k2 	= ∅.

As a consequence, if Pk1,k2 = ∅ we can say that the model (2), with admissible parameter set P , is
invalidated by the measurements Yk1 ,Yk2 . Thus, the condition Pk1,k2 = ∅ is sufficient for model invalidity.

The set Pk1,k2 is the projection on Rnp of the higher-dimensional set F(P ,X ,Y) ∈ R(m+1)nx+2ny+np

defined by the feasibility problem

F (P ,X ,Y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y[k1] = h(x[k1], p)
y[k2] = h(x[k2], p)
x[i] = g(x[i− 1], p) i ∈ M \ {k1}
x[i] ∈ X i ∈ M
y[k1] ∈ Yk1

y[k2] ∈ Yk2

p ∈ P ,

(4)

where M = {k1, . . . , k1 + m = k2}. An efficient approach to the solution of this feasibility problem for
the case of polynomial systems is discussed in Section 4.

Multiple Measurements. The above approach can be directly extended to a multiple-measurement
sequence Y = {Yk1 , . . . , YkN

} by defining m = kN − k1 and including in (4) the constraints y[ki] =
h(x[ki], p) and y[ki] ∈ Yki

for every measurement i ∈ {1, . . . , N}. However, this approach quickly becomes
computationally prohibitive as the number of measurements increases, since the number of variables of
F (P ,X ,Y) increases.

We therefore consider a less demanding though more conservative approach, for which the key idea is
to consider pairwise consecutive measurements. If any of the parameter sets Pki,ki+1 is empty, then the
model (2) is invalid. We additionally demand a consistent parametrization of the model (2), defined as

PY =

N−1⋂
i=1

Pki,ki+1 .

Note that PY provides an estimate of the model parameters. If PY = ∅, then the model (2) and the
admissible parameter set P are invalidated by the measurements Y.

y

1 2 3 4 k

P1,2

P2,3

P3,4

Y1

Y2

Y3

Y4

(a)

p1

p2

P1,2

P2,3

P3,4
PY

(b)

Figure 1: Description of the set-based invalidity approach. (a) Representation of the system flow, with
measurements indicated by error bars. (b) Feasible parameter sets for consecutive measurements. The
intersection of the feasible parameter sets is not empty, and hence the model is not invalidated by the
measurements.

In the remainder, we show how to solve the feasibility problem given by (4) for the class of polynomial
systems, and provide an algorithm to outer-approximate the feasible parameter set.

4 Bounding Feasible Parameter Sets by Semidefinite Program-
ming

In this section we focus on how to estimate the feasible parameter set given by the feasibility problem
F (P ,X ,Y) (4). In general, this is a hard non-convex optimization problem, where non-convexity results
from the nonlinearities of the model equations.

A method that allows to obtain some results on the infeasibility of polynomial optimization problems
has been proposed in [4]. By taking advantage of the polynomiality, it is possible to relax F (P ,X ,Y) to
a convex semidefinite program (SDP). Such SDPs can then be solved efficiently, e.g. via interior point
methods.
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To do so, first the original feasibility problem is to be reformulated as a quadratic feasibility problem
(QFP). For simplicity of notation, let us consider two measurements taken at consecutive time steps. We
define the variable vector

ξT = (1,
pi, i ∈ Np,
x[k]j , x[k + 1]j , j ∈ Nx,
y[k]�, y[k + 1]�, � ∈ Ny,
x[k]j · pi, x[k + 1]j · pi, i ∈ Np, j ∈ Nx,
y[k]l · pi, y[k + 1]l · pi) i ∈ Np, l ∈ Ny,

containing all the monomials appearing in (4).

Let Sn be the set of real symmetric n× n matrices, and let � denote the order operator with respect to
the cone of positive semidefinite matrices in Sn. The equality constraints

xi[k + 1]− gi(x[k], p) = 0 i ∈ Nx

yi[k]− hi(x[k], p) = 0 i ∈ Ny

yi[k + 1]− hi(x[k + 1], p) = 0 i ∈ Ny

can be respectively written as

ξT Qiξ = 0 i ∈ Nx

ξT R1

i ξ = 0 i ∈ Ny

ξT R2

i ξ = 0 i ∈ Ny

where Qi, R
1

i , R
2

i ∈ Snξ are symmetric matrices. This quadratic decomposition is possible for the consid-
ered time-discrete system (2) with polynomial structure. Thus, the approach depends on a discretization
method that leads to polynomial g(·, ·) and h(·, ·).

Note also that some elements of the vector ξ may be dependent from one another. Such dependencies
can also be expressed in the quadratic form

ξT Diξ = 0, i ∈ Nd,

where Nd = {1, . . . , nd}, nd being the number of dependencies. The feasibility problem (4) can then be
written as

QFP (P ,X ,Y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

find ξ ∈ Rnξ s.t.
ξT Qiξ = 0 i ∈ Nx

ξT R1

i ξ = 0 i ∈ Ny

ξT R2

i ξ = 0 i ∈ Ny

ξT Diξ = 0 i ∈ Nd

Bξ ≥ 0
ξ1 = 1,

where B ∈ Rnξ×2(nξ−1) is constructed to define the bounding constraints for each component of ξ (but
the first). Note that B defines the constraints y[k] ∈ Yk, y[k + 1] ∈ Yk+1, p ∈ P , and x[k], x[k + 1] ∈ X .

Problem QFP (P ,X ,Y) can be subsequently relaxed into an SDP (see e.g. [7]) by setting X = ξ · ξT and
replacing the conditions rank(X) = 1 and tr(X) ≥ 1 with the weaker constraint X � 0, resulting in the
relaxed formulation

SDP (P ,X ,Y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find X ∈ Snξ s.t.
tr(QiX) = 0 i ∈ Nx

tr(R1

i X) = 0 i ∈ Ny

tr(R2

i X) = 0 i ∈ Ny

tr(DiX) = 0 i ∈ Nd

BXe1 ≥ 0
tr(e1e

T
1
) = 1

BXBT ≥ 0
X � 0,

where e1 = (1, 0, . . . , 0)T ∈ Rnξ . This relaxation is based on an image convexification method ([9]).
As the relaxation process is conservative, all the solutions that were previously feasible remain feasible.
However, “false” solutions may have been introduced. Although this does not lead to wrong invalidation
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results, it may lead to considering an invalid model as valid. Constraints BXBT ≥ 0 are added to
strengthen the relaxation and reduce this problem (see [4]).

It is a standard procedure in convex optimization to use the dual problem to certify infeasibility of the
primal problem ([1, 6]). Weak duality of SDP ensures that if the dual problem is unbounded, then the
primal problem is infeasible.The corresponding Lagrangian dual to SDP (P ,X ,Y) is given by

LD(P ,X ,Y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max νnν

s.t. BT λ2B + e1λ
T
1
B + BT λ1e

T
1
+

+λ3 +
∑

i∈Nx
νiQi +

∑
i∈Ny

νnx+iRi+

+
∑

i∈Nd
νnx+ny+iDi + νnν

e1e
T
1

= 0

λ1 ≥ 0, λ2 ≥ 0, λ3 � 0,

where λ1 ∈ R2(nξ−1), λ2 ∈ S2(nξ−1), λ3 ∈ Snξ , ν ∈ Rnν are the free variables, with nν = nx +ny +nd +1.

4.1 Outer-Approximation

As infeasibility of (4) can be certified solving LD, the feasible parameter set can be outer-approximated
by removing infeasible subregions in the surrounding. There are many possibilities to do so. A general
approach is to partition the initial parameter space and to check the partitions for infeasibility. This
approach derives from the one proposed by [4], where parameter regions containing no steady states are
similarly estimated.

In order to reduce the overall computational cost, the following simple bisection algorithm is implemented,
so as to check groups of partitions simultaneously. Hereby, Q is an hyper-rectangle in the space of the
bisection variables, which here is the space of the parameter variables pi, for i ∈ Np.

Algorithm 1 Outer-Approximate(Q,Yk,Yk+1)

0. If volume(Q) ≤ ε, return Q

1. Compute the Lagrangian dual LD(Q,Yk,Yk+1)

2. If LD is feasible, then return ∅

3. If LD is not feasible, then

a. Partition Q into Q1 and Q2

b. Set Q′
1

:= Outer-Approximate(Q1,Yk,Yk+1)

c. Set Q′
2

:= Outer-Approximate(Q2,Yk,Yk+1)

d. Return Q′
1
∪ Q′

2

Note that Pk,k+1 is contained in the set obtained calling Outer-Approximate(P ,Yk,Yk+1), up to the
given precision threshold ε. This results in a robust and convergent way to explore the parameter space.
An illustration of the resulting partition given by the algorithm is given in Figure 2.

p1

p2

Figure 2: Bipartition algorithm. Grey boxes indicate invalidated parameter regions. The black set corre-
sponds to the set to be approximated.

The computational time TA of Algorithm 1 is O(N ·TD), where TD is the time taken by a single Lagrangian
dual computation and N is the number of dual evaluations, which depends on the precision threshold
and the number of bisection variables considered. Increasing the dimensionality of the bi-partitioning or
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reducing the threshold increases exponentially the time required, but it is important to note that the
algorithm can be easily and efficiently paralleled.

The proposed algorithm can be modified to obtain upper and lower bounds on each variable considered
corresponding to a one dimensional bi-sectioning. This can be advantageous if for example several time
steps between the measurements are considered. Then, the number of bisection variables includes not
only the unknown parameters np, but also the intermediate (m − 1)nx system states. Considering only
the physical bounds of the intermediate states may lead to too conservative results. It is therefore
advantageous to combine less demanding upper and lower bounds approximation of the states, which
are considered in the following section, with the computationally more demanding bi-sectioning of the
parameter space.

5 State Estimation
Formulating the invalidation problem as a feasibility problem allows also to outer–approximate the initial
conditions and the system states of the discrete system from measurements, even if the parameters and
the experimental data are uncertain. This is basically achieved considering the feasibility problem (4)
while keeping the parameters fixed and choosing the corresponding system states as bisection variables.

Initial State Estimation. Given each measurement Yk, the set Xk of the feasible system state at
time index k can be estimated by solving the feasibility problem

F (Xk,Yk) :=

⎧⎪⎨⎪⎩
y[k] = h(x[k], p)
x[k] ∈ Xk

y[k] ∈ Yk

p ∈ P ,

(5)

Note that this includes also the initial state.

Using the same approach used to bound P solving the feasibility problem F (P ,X ,Y), we can similarly
bound the set Xk, using a semidefinite relaxations of F (Xk,Yk) and modifying the bisection algorithm
so as to consider as bisection variables the state variables x[k]j , for i ∈ Nx.

Intermediate States. Given an initial state Xk, the system state at time k + 1 can be estimated by
solving the feasibility problem

F (Xk+1,Xk) :=

⎧⎪⎨⎪⎩
x[k + 1] = g(x[k], p)
x[k + 1] ∈ Xk+1

x[k] ∈ Xk

p ∈ P ,

(6)

As for the previous problem, we can bound the set Xk+1, given Xk, using a semidefinite relaxations of
F (Xk+1,Xk), and modifying the bisection algorithm so as to consider as bisection variables the state
variables x[k]j , for i ∈ Nx. By estimating the state space for consecutive time indexes allows to evaluate
the flow of the system.

Note that the system state at time k−1 can be similarly estimated. As the quality of the bounds obtained
decreases as the distance from the last measurement increases, this allows to obtain better estimates for
states that are far from the closest previous measurement, but near to the following one.

6 Example
In this section we show the application of our method to a well-known example system. We consider two
possible reaction mechanisms proposed by [3] between an enzyme (E) and a substrate (S) forming an
enzyme-substrate complex (C):

E + S
p1�

p
−1

C
p2
→ E + P, (7)

and

C
p̃1�̃

p
−1

E + S
p̃2
→ E + P. (8)

These reaction schemes are known nowadays respectively as the Michaelis-Menten (MM) mechanism of
enzyme activation (7) and as the Henri (H) mechanism (8). Both reaction schemes and their relevance
are discussed in detail e.g. in [10], in which a main result states that both reaction mechanisms are
analytically distinguishable, if the transient initial dynamic of two independent states is considered. We
therefore consider measurements in the transient phase.
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The reaction mechanisms are modeled according to the law of mass action. Since both mechanisms obey
the two conservation laws

e0 = e(t) + c(t),

s0 = s(t) + c(t) + p(t),

both models can be expressed as second order systems. Let us then consider a simple first order Euler
discretization scheme (see e.g. [5]), given by

ẋ[k] ≈
x[k + 1]− x[k]

h
,

where h > 0 denotes the size of the discretization step and x[k] the value of x(t) for t = kh. Fixing
e0 = 1, the corresponding difference equations for the MM mechanism are given by

s[k + 1] = s[k] + p1h((c[k]− 1)s[k] + KSc[k])

c[k + 1] = c[k] + p1h((1− c[k])s[k]−KMc[k]),
(9)

where KS = p−1/p1, KM = (p−1 + p2)/p1. For the Henri mechanism we obtain

s[k + 1] = s[k] + h(p̃1 + p̃2)((c[k]− 1)s[k]−KHc[k])

c[k + 1] = c[k] + p̃1h((1− c[k])s[k]− K̃Sc[k]),
(10)

where K̃S = p̃−1/p̃1 and KH = p̃−1/(p̃1 + p̃2).

6.1 Model Discrimination

In order to discriminate between the models, we consider the ideal (noise-free) measurements

YH = {Yk = y[k] = (s[k], c[k])T , 3 ≤ k ≤ 7},

taken from the Henri mechanism (H) with (s[0], c[0]) = (1, 0), h = 0.1sec and the parameter values p̃1 = 1,
p̃−1 = 1, p̃2 = 1. Next, we show that the MM is invalid with respect to these measurements.

For the invalidation setup, we consider as initial parameter space PMM a range of one order of magnitude
for each parameter:

1

3
≤ p1, p−1, p2 ≤ 3.

In order to show model invalidity, the feasible parameter sets P3,4, P4,5, P5,6, and P6,7 for the corre-
sponding time points are calculated via Algorithm 1. As partition of the parameter space PMM we chose
unitary hypercubes, whereas each cube is of size 0.05. The feasible parameter sets are shown in Figure 3.

1

2

3

0.511.522.53
0.5

1

1.5

2

2.5

3

p1p−1

p 2

Figure 3: Feasible parameter sets from P3,4 to P6,7 from to dark to light gray matching the measurements.

As can clearly be seen from the Figure 3, the intersection

PYH =

6⋂
i=3

Pi,i+1

of the feasible parameter sets is empty. Thus, the Michaelis-Menten mechanism with the admitted PMM

is invalidated with respect to the measurements YH .
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6.2 Parameter Estimation

In order to estimate the model parameters, we consider now the ideal measurements YMM = {Yk =
y[k] = (s[k], c[k])T , 1 ≤ k ≤ 6} taken from the Michaelis-Menten mechanism (9) with (s[0], c[0]) = (1, 0),
h = 0.1sec and the parameter values p1 = 1, p−1 = 1, p2 = 1.

The feasible parameter sets Pi,j are estimated considering Algorithm 1 and depicted in Figure 4. In this
case, the intersection PY according to Corollary 3 is highlighted in black corresponding to the consistent
feasible parameter set.

0.5

1

1.5

2

0.5
1

1.5
2

2.5
3

0.5

1

1.5

p1
p−1

p 2

Figure 4: Parameter sets. The intersection of the parameter sets is indicated black.

The complement P \ PY of PY is therefore classified as infeasible.

As the number of measurements considered increases, the parameter estimates improve, see Figure 5.
Notably, with this approach large regions of the parameter space can be discarded considering only a few
measurements.

p1

k
1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

p−1

k
1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

p2

k
1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 5: Feasible parameter regions (shaded in the figure) with respect to the number of measurements
taken into account.

Remark 2 For the examples considered, the Lagrangian dual is computed within less than one second
on a standard desktop computer using MATLAB 2008 and the SEDUMI ([11]) solver.

7 Discussion and Outlook
In this contribution we have studied the problems of model invalidation, parameter and state estimation
of discrete-time polynomial systems, and we proposed a method that allows to discriminate between
different model hypotheses by invalidation. Conclusive results can be achieved on the model invalidation
problem even if only imprecise or sparse measurements are available. The method also allows to discard
large parameter regions, and therefore complements existing identification methods. Furthermore, we
have also shown how to use this method to estimate the model states from the measurements.

The proposed method is based on the outer-approximation of the feasible parameter space, or of the
feasible state space, for state estimation, into a set of regions that are consistent with the experimental
data. These regions correspond to the solution space of a nonlinear feasibility problem, which we relax
into a semidefinite program. By solving the corresponding Lagrangian dual, and applying a bisection
algorithm, the feasible regions can then be efficiently bounded.

We have shown with an example, considering two alternative enzyme-substrate reaction mechanisms,
that with this method it is possible to prove invalidity of one of the two mechanisms. Extending this
example, we also demonstrated the applicability of the approach to estimate the model parameters.
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In summary, our approach is a reliable and computationally manageable method for dynamical model
invalidation, and parameter and state estimation. Future work considered including model inputs and
addressing the issue of experimental design of biochemical reaction networks.
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