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Abstract. In the post-genomic era elementary flux modes represent a key concept to analyze 
metabolic networks from a pathway-oriented perspective. In spite of considerable work in this 
field, the computation of the full set of elementary flux modes in large-sized metabolic networks 
still constitutes a challenging issue. In this paper we illustrate that the full set of elementary flux 
modes can be enumerated via integer linear programming. Technically, our approach produces 
elementary flux modes in increasing order of number of reactions by sequentially solving an opti-
mization problem. Though our procedure is not particularly efficient in computing the full set of 
elementary flux modes for large-sized metabolic networks, it is very flexible. It can be applied to 
calculate the elementary flux modes satisfying a given criteria without having to calculate all the 
solutions first, in contrast to what is typically done by current methods. This greatly speeds up 
computation by focusing only on that part of the solution space that is of interest. Since computa-
tion time increases as the length increases, it is promising to start with the shortest, second short-
est, etc., (overall called K-shortest) elementary modes. Detection of these is indeed of interest for 
several biological applications. Experimentally, it is difficult to insert and express a large number 
of heterologous genes and shorter pathways can carry higher fluxes. To illustrate the scope of our 
approach, we analyse a subset of elementary flux modes that produce L-lysine in Escherichia coli. 
Our analysis shows that our mathematical approach can be an effective tool to explore the capa-
bilities of metabolic networks at the genome scale.

1 Introduction 
Elementary flux modes (EFMs) represent a key concept for the analysis of metabolic networks in the post-
genomic era. An EFM is defined as being a minimal subset of enzymes that operates in steady-state with all 
irreversible reactions used in the appropriate direction [17]. The relevance of EFMs in different fields has been 
broadly described in the literature [4], [5], [7], [13], [16].  

However, EFMs analysis suffers from an important drawback. As the size of the metabolic network increases, 
the number of EFMs grows exponentially. More than two million EFMs have been reported for the metabolic 
network describing the central metabolism in Escherichia coli, which contains approximately 110 reactions [6], 
[25]. A number of attempts have been made to cope with the huge number of EFMs stemming even from rela-
tively small networks. Stochastic optimization methods were employed to find a classification of external and 
internal compounds that minimised the number of EFMs [3]. Such an approach, although allowing a reduction in 
the number of EFMs, did not necessarily lead to a global minimum, as admitted by the authors. A similar ap-
proach was taken by Teusink et al., where a reduction of the EFMs was obtained by carefully adjusting the status 
of metabolites between internal and external [22]. Partitioning of the whole network into smaller subnetworks 
was considered by Schuster et al., who created a tool called SEPARATOR that automatically performed the 
classification of internal vs. external metabolites and the corresponding decomposition of the network based on 
the connectivity of metabolites [18]. Recent approaches use binary tree search [6], [21] that allows pruning of 
children nodes that cannot contain a valid solution. They reduce memory requirements, decrease computation 
time and allow for parallelisation. The overall improvements allowed EFMs to be computed 4–5 times faster 
than previous methods and enabled computation of E. coli central metabolism in a reasonable time. 

Although the number of EFMs that even small networks generate might be overwhelming, it is worthwhile to 
note that the number of EFMs is an intrinsic characteristic of the network, which as such can neither be avoided 
nor overcome. Rather, ways need to be found to cope with such complexity when inferring useful knowledge. 
One approach could be to focus only on those EFMs that are related to the particular problem of interest. This 
however is impeded by the fact that existing algorithms compute all EFMs before any further analysis is per-
formed.  

In this paper we present a novel approach that enables us to compute EFMs in increasing order of number of 
reactions by sequentially solving an optimization problem. Although our procedure is not particularly efficient to 
compute the full set of EFMs in large-sized metabolic networks, it allows the analysis of a selected part of the 
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metabolic network without first having to compute all EFMs. This is performed by employing integer linear 
programming techniques, which have already proved useful for metabolic pathway recovery [2]. By imposing 
constraints on the EFMs to be computed only those that are of interest will be determined without having to 
enumerate all EFMs even if the metabolic network is large, as in genome-scale models.  

2 Methods 
Assume we have a metabolic network that comprises R reactions and C compounds. Note here that reversible 
reactions contribute two different reactions to the metabolic network. For this reason we can regard all fluxes as 
taking positive values. Let scr be the stoichiometric coefficient associated with compound c (c=1,…,C) in reac-
tion r (r=1,…,R). As usual in the literature [14], [17] , input compounds have a negative stoichiometric coeffi-
cient, whilst output compounds have a positive stoichiometric coefficient. The matrix that contains these coeffi-
cients is typically named Stoichiometric Matrix. 

Suppose we are concerned with finding the K-shortest EFMs in the metabolic network. We mean here by 1-
shortest EFM, the EFM containing the minimum number of reactions; 2-shortest elementary flux mode the EFM 
containing the second minimum number of reactions; etc. Note here that we may have multiple EFMs containing 
the same minimum number of reactions. 

2.1 Variables 
Firstly, we need to decide the reactions involved in a particular EFM. Our model represents this situation by a 
zero-one (binary integer) variable, namely zr=1 if reaction r (r=1,…,R) is active in the EFM, 0 otherwise. In 
addition, each reaction has also an associated non-negative (integer) flux tr. Clearly, the reaction flux tr=0 if the 
reaction is not active, i.e. zr=0. 

2.2 Constraints 
We need constraints relating the reaction variables: zr and tr. Equation (1) ensures that no flux traverses a reac-
tion r if zr=0. Equation (2) guarantees that tr is non-zero if zr=1. Note here that in the case a reaction r is active 
(zr=1), its associated (integer) flux value tr can take any value from the interval [1, M], M being a large constant 
value. Here we have scaled fluxes so that the maximum flux is M and the minimum (non-zero) flux is 1. This 
does not constitute an issue if we consider M sufficiently large. Computation time is directly related to this pa-
rameter. Clearly, computation time increases when M increases. In order to have a reasonable computation time, 
M was fixed to 10. We think that this value is appropriate, since, as we are calculating elementary (minimal) flux 
modes, flux values are not expected to be too high.

RrMzt rr ,,1 �=≤      (1)

Rrtz rr ,,1 �=≤     (2)
Defining the set B={(�,�)| reaction � and reaction � are the reverse of each other, �<�}, equation (3) ensures 
that a reaction and its reverse do not appear in an EFM.  

( ) Bzz ∈∀≤+ βαβα ,1     (3) 
Equation (4) applies the steady state assumption to the set of internal compounds, I. This is a critical condition 
for EFMs. As opposed to internal compounds, external compounds are excluded from being balanced, because 
they are exchange metabolites between the outside and the system under study or they belong to metabolic pools 
whose concentration is assumed constant. They typically represent consumed substrates, excreted products and 
cofactors. We denote E the set of external compounds. 
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In order to avoid the trivial solution (zr=tr=0, r=1,..., R), we need to add Equation (5) to our formulation. 
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2.3 Objective function 
EFMs by definition cannot be decomposed into smaller entities without violating the steady state assumption, 
Equation (4). This is typically referred as to the non-decomposability condition [17]. In essence, this condition 
implies that no subset of reactions of an EFM can perform in steady state. For this reason EFMs are defined as 
being minimal set of reactions in steady state [16]. This constraint has not been explicitly considered above. 
However, by minimizing the number of active reactions involved in the solution pathway, as is done in Equation 
(6), we can be sure that the non-decomposability condition is satisfied. Clearly, the flux mode involving the 
minimum number of reactions will be elementary.  
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2.4 EFM elimination constraints 
The mathematical optimization model given above (optimize (6) subject to equations (1)-(5)), once solved, allow 
us to obtain the shortest EFM. However, we are concerned here with calculating the K-shortest EFMs. In order to 
find the K-shortest EFM, we need to add further constraints to eliminate the (K-1)-shortest EFMs from the set of 
solutions. To illustrate this, suppose we are interested in finding the 2-shortest EFM. Let 1

rZ  be the zero-one 
binary (integer) solution associated with the shortest elementary flux mode. Note here that 1

rZ  takes value 1 
when reaction r is active in the shortest EFM, 0 otherwise. We need to eliminate the shortest EFM from the set of 
solutions. To do this we add the following constraint to our previous formulation:  
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This constraint ensures that, once we solve our model after equation (7) has been added to our formulation, the 
new solution found does not contain the shortest EFM. This also guarantees that the shortest EFM can never 
occur as a part of any other flux mode. In essence, we remove the shortest elementary flux mode from being a 
subset of any future solution. 

In the general case, in order to find the K-shortest EFM, we need to include k-1 EFM elimination constraints 
related to the first (K-1) shortest EFMs, as shown in equation (8). k

rZ  represents the binary solution for the k-
shortest EFM. 
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Note here that the K-shortest EFMs described above are also elementary. For illustration, suppose that the K-
shortest EFM (once solved) is not elementary, i.e. it contains a subset of reactions that would satisfy constraints 
(1)-(5), (8). The question is therefore, since we are constructing EFMs in increasing order of the number of reac-
tions they contain, why did we not find this EFM before? Logically, as it involves fewer reactions, we must have 
encountered it before. But if we had encountered it before then we would have added a constraint, as described 
in equation (8), preventing it from ever appearing as a subset in future EFMs. So it cannot in that case ever be 
found as part of the K-shortest EFM. In other words, we have a contradiction here. For this reason, due to our 
construction procedure, every EFM we find must be elementary. 

2.5 Biological constraints 
In theory our procedure can be applied to enumerate all EFMs, namely by constructing them one by one. This is 
not particularly efficient for large-sized metabolic networks. However, the main advantage of our mathematical 
optimization model is that, by adding new constraints, special subsets of EFMs (of particular biomedi-
cal/biotechnological interest) can be found. This fact makes our algorithm more flexible than previous ap-
proaches [6], [16], [21]. We present below some of these constraints that can be easily added to our formulation.  

Firstly, we may need to find EFMs that utilize a proper growth medium. We mean here by medium, U, the set of 
external compounds that can be taken up from the outside of the boundaries of the network. These compounds 
are assumed to have a high concentration outside the system, so that they can be easily taken up into the meta-
bolic network. This uptake is typically carried out via transport reactions. In the case an external compound c is 
not included in the medium set, we need to deactivate the transport reactions associated with this compound. 
Equation (9) describes how this constraint is incorporated into our model. 

[ ][ ]RrswithUcIcCcift crr ,,1,1,,,10 �� =−≤∉∉∈∃=   (9) 

We may need to find the K-shortest EFMs that produce a particular external compound, μ. In order to do this, we 
need to add the following constraint: 
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This can be easily reformulated if we want an external compound μ to be used as substrate, as observed in Equa-
tion (11).  
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Note here that Equation (5) can be dropped from the formulation if we include Equation (10) or Equation (11). 

We may also be interested in excluding from balancing certain cofactors or metabolites present in high concen-
tration, such as ATP, NADH, H2O, CO2 etc. This is just done by removing Equation (4) for these biochemical 
compounds, including them in the set of external metabolites. In such case, cofactors can be freely consumed 
and produced. 

2.6 Overview 
Our mathematical optimization model given above for computing K-shortest EFMs (optimise (6) subject to (1)-
(5) plus EFMs elimination constraints (8) and perhaps constraints (9)-(11)) is a linear integer program. Algo-
rithmically such programs are solved by linear programming based tree search. Modern software packages to 
perform this task, such as ILOG CPLEX®, which we used, are well developed and highly sophisticated. 

3 Results 

3.1 Introduction 
In this section we present results of application of our mathematical optimisation model to compute the K-
shortest EFMs in two different metabolic networks. 

Firstly, we considered the metabolic network of part of the monosaccharide metabolism [16], which comprises 
19 reactions and 26 biochemical compounds. This small network includes the combined glycolysis/pentose 
phosphate pathway system. This network was chosen to show that our approach indeed produces EFMs.  

Secondly, we examined the performance of our procedure in a large metabolic network, specifically a genome-
scale metabolic network of E. coli K-12 (iJR904 GSM/GPR) [10]. Our approach was applied to analyse L-lysine 
biosynthesis pathways. 

3.2 Network of Monosaccharide metabolism 
Figure 1 shows the network of part of the monosaccharide metabolism presented in Schuster et al., [16]. Aside 
from typical cofactors, ribose-5-phosphate (R5Pex), pyruvate (Pyr) and glucose-6-phosphate (G6P) were consid-
ered as external compounds, represented as grey nodes. Dashed nodes were duplicated for better visualization, 
e.g. glyceraldehyde-3-phosphate (GAP). Note that the same metabolite and reaction abbreviations adopted here 
are the same as in the original model [16]. 

Figure 1: Reaction scheme of monosaccharide metabolism. Reversible reactions are indicated by bidirectional arrows. For 
the meaning of abbreviations, see [16]. 

As described above, optimising (6) subject to equations (1)-(5) plus EFM elimination constraints (8), produces 
EFMs in according to increasing number of reactions. Since the size of the network under consideration is small, 
our approach was applied to enumerate all EFMs.  

Our optimization approach yielded exactly the same 7 EFMs that were reported in Schuster et al. [16], where 
METATOOL [8] had been used to compute the EFMs. Figure 2(a) shows the shortest EFM obtained from Figure 
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1. The shortest EFM involves just 2 reactions. Figure 2(b) shows the 2-shortest EFM, which contains 5 reactions. 
The 3-shortest, 4-shortest, 5-shortest and 6-shortest EFMs, though not shown here, contain 9, 10, 12 and 14 
reactions, respectively. Figure 2(c) shows the 7-shortest EFM, which contains 16 reactions. This analysis shows 
that our approach indeed produces non-decomposable pathways at steady-state. 

(a) (b) (c) 

Figure 2: Graphical representation of the shortest (a), 2-shortest (b) and 7-shortest EFMs (c). 

3.3 Genome-scale metabolic network of E. coli 
We used the metabolic network of E. coli K-12 (iJR904 GSM/GPR) [10]. This network distinguishes between 
two different compartments, namely the cytosol and extracellular compartments. The biochemical compounds 
present in the cytosol represent the set of internal compounds, whilst compounds included in the extracellular 
compartment represent the set of external compounds. 

In order to illustrate the potential of our K-shortest EFMs method in large metabolic networks, we studied a 
biochemical problem related to the synthesis of L-lysine. Note here that Equation (10) was imposed for L-lysine, 
i.e. we add to our basic formulation (optimise (6) subject to (1)-(5) plus EFMs elimination constraints (8)) a 
constraint ensuring that L-lysine is released to the extracellular compartment at a positive rate. The addition of 
this constraint does not imply that the non-decomposability condition is lost. Rather it implies that we are only 
concerned with those EFMs producing L-lysine. The non-decomposability condition might be lost in the case 
where more than one constraint of this type is added to our basic formulation, e.g. EFMs that consume glucose 
and produce L-lysine. Further analysis would be required in such cases. However, this is beyond the scope of 
this paper and further research is needed, as noted in the Discussion section. 

L-lysine is one of the essential amino acids in humans and is also used as supplement in animal feeds. The indus-
trial production of this amino acid is very important and has a long history in the biotechnology field [23], [26].  

Existing studies mainly focus on the regulation of L-lysine synthesis because, from the metabolic perspective, 
amino acids biosynthesis pathways are generally linear after a key metabolic precursor, such as pyruvate . There-
fore, the regulation of such pathway plays an important role in microbial optimization [23].  

Nevertheless, the improvement of cofactor regeneration, such as NADPH and ATP, is another optimization point 
[23]. Strains optimized for amino acid overproduction require higher regeneration rates of NADPH and ATP in 
order to cope with the high fluxes present in biosynthetic pathways. Consequently, it is of interest to know which 
pathways can supply (or reduce) cofactors required for amino acid synthesis. This problem can be studied in the 
framework of metabolic pathway analysis.  

We considered three different cases concerning the synthesis of L-lysine in E coli. For each case, we defined a 
different medium set, U, and treatment for cofactors. Standard growth medium has been defined in experimental 
works [12]. Soybean hydrolysate was assumed to be composed of the amino acids present in Table 1.  

In the first problem we used the basic formulation together with the amino acids shown in Table 1 as medium 
set. In the second problem the amino acids were removed from the medium set. In the last problem, the addi-
tional external metabolites set in Table 1 were excluded from the set of internal compounds, while keeping 
amino acids outside the medium set. Note here that, as described in Methods, those compounds in the extracellu-
lar compartment not included in the medium set cannot be consumed, but can be produced. Indeed, such com-
pounds might represent by-products which are associated with a biosynthetic process.  
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Again, name nomenclature in the original model [10] was kept and therefore the reactions abbreviations are in 
upper case and the metabolites abbreviations are lower case. Also the reactions default directions are the same, 
c.f. [10].  

Medium Metabolites 

Basic Formulation Amino acids 

Additional 
external 

metabolites 
set 

pi[e] glu-L[e] co2 
so4[e] ser-L[e] nadp 
fe2[e] asp-L[e] adp 
co2[e] ile-L[e] amp 
h2o[e] his-L[e] h 
na1[e] pro-L[e] nad 
glc-D[e] trp-L[e] atp 
k[e] thr-L[e] nadh 
h[e] phe-L[e] pi 
nh4[e] ala-L[e] nadph 
o2[e] lys-L[e] h2o 
 met-L[e] coa 
 arg-L[e]  
 gly[e]  
 leu-L[e]  
 val-L[e]  
  tyr-L[e]   

Table 1: Definition of medium metabolites set and cofactors set. 

Table 2 shows the first 10 shortest EFMs that produce L-lysine (lys-L[e]) for the first problem under considera-
tion. The computation time was approximately 4 minutes (Intel Core® Duo Processor T2400, 2GB RAM). For 
K=1 we have the shortest EFM; K=2 the 2-shortest EFM, i.e the second shortest EFM; etc. L represents the 
length of the EFM, i.e. the number of reactions involved in the EFM. The overall reactions equation given in that 
table is a representation of the complete transformation of substrates into products. Consequently, cofactors do 
not appear in this representation because they are constrained to being balanced and their net gain or consump-
tion is null. For example the balancing of ATP is achieved by adding to the solution the reaction catalyzed by the 
ATP synthase (ATPS4r), which converts one molecule of ADP into one of ATP using the import of 4 protons 
from the extracellular compartment as driving force. From Table 2 it is possible to calculate the amount of ATP 
required for the conversion of the nutrients in the medium into L-lysine, which is approximately 2 to 3 molecules 
of ATP per molecule of L-lysine. 

Figure 3 displays the first 3 shortest EFMs from Table 2. The number in brackets corresponds to the number of 
EFMs (among the first 3 shortest EFMs) in which the reaction is present. The thickness of the arrows is also 
proportional to the presence of the reactions in each EFM. The boxed reactions names represent the L-lysine 
biosynthesis pathway [9]. Dashed nodes were duplicated for better visualization. The following list of com-
pounds was removed from the figure to simplify its visualization: NAD, NADH, ATP, ADP, NADP, NADPH, 
Pi, H2O, CoA and H. The visualization of the network used yEd® version 3.1.2. 

It can be observed from Figure 3 that the main difference between the first 3 shortest EFMs relates to the trans-
port reactions used for the uptake of L-aspartate (asp), namely ASPt2, ASPt2_2 and ASPt2_3.  These three 
transport reactions only differ in the amount of protons released to the extracellular compartment. This fact illus-
trates the combinatorial complexity of the solution space and the hardness of calculating EFMs in large meta-
bolic networks.  

It can also be observed from Table 2 that the shortest EFMs consume amino acids from the medium instead of 
the main carbon source, glucose, and that compounds such as pyruvate (pyr) and 2-oxoglutarate (akg) are ex-
ported as by-products. These compounds are precursors of essential compounds for cell growth and therefore it 
is implausible they would be excreted. 
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K L Overall reaction equations 

1 21 3 ala-L[e] + 1 asp-L[e] + 7 glu-L[e] + 9 h[e]  
  ³ 7 4abut[e] + 8 co2[e] + 1 lys-L[e] + 2 nh4[e] + 2 pyr[e] 

2 21 3 ala-L[e] + 1 asp-L[e] + 8 glu-L[e] + 10 h[e]  
  ³ 8 4abut[e] + 9 co2[e] + 1 lys-L[e] + 2 nh4[e] + 2 pyr[e] 

3 21 3 ala-L[e] + 1 asp-L[e] + 9 glu-L[e] + 11 h[e]  
  ³ 9 4abut[e] + 10 co2[e] + 1 lys-L[e] + 2 nh4[e] + 2 pyr[e] 

4 22 1 asp-L[e] + 10 glu-L[e] + 9 h[e] + 1 ser-L[e]  
  ³ 7 4abut[e] + 3 akg[e] + 8 co2[e] + 1 lys-L[e] + 3 nh4[e] 

5 22 1 ala-L[e] + 1 asp-L[e] + 9 glu-L[e] + 9 h[e]  
  ³ 7 4abut[e] + 2 akg[e] + 8 co2[e] + 1 lys-L[e] + 2 nh4[e] 

6 22 1 ala-L[e] + 1 asp-L[e] + 10 glu-L[e] + 10 h[e]  
  ³ 8 4abut[e] + 2 akg[e] + 9 co2[e] + 1 lys-L[e] + 2 nh4[e] 

7 22 4 asp-L[e] + 4 glu-L[e] + 9 h[e]  
  ³ 4 4abut[e] + 8 co2[e] + 1 lys-L[e] + 2 nh4[e] + 2 pyr[e] 

8 22 8 asp-L[e] + 9 h[e] ³ 4 ala-L[e] + 8 co2[e] + 1 lys-L[e] + 2 nh4[e] + 2 pyr[e] 

9 22 1 asp-L[e] + 11 glu-L[e] + 10 h[e] + 1 ser-L[e]  
  ³ 8 4abut[e] + 3 akg[e] + 9 co2[e] + 1 lys-L[e] + 3 nh4[e] 

10 22 1 ala-L[e] + 1 asp-L[e] + 11 glu-L[e] + 11 h[e]  
  ³ 9 4abut[e] + 2 akg[e] + 10 co2[e] + 1 lys-L[e] + 2 nh4[e] 

Table 2: 10 shortest EFMs using a standard growth medium. 

Figure 3: Superposition of the first 3 shortest EFMs calculated for conditions of a standard medium. 

In the second problem we reformulated the question so as to find the shortest EFMs that produce L-lysine using 
glucose as carbon source. In order to do this, we removed the amino acids from the medium set. This implies that 
amino acids can only be produced, but not consumed. Table 3 shows the first 10 shortest EFMs for this second 
problem. The computation time was 10 minutes.  

From Table 3 it can be observed that the length of the EFMs has considerably increased in comparison with the 
previous problem. In addition, it is interesting to note that the 5-shortest EFM consumes oxygen. However, there 
are still a large number of compounds that are excreted as by-products. 
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K L Overall reaction equations 

1 30 4 glc-D[e] + 2 nh4[e]  
  ³ 4 h2o[e] + 7 h[e] + 4 lac-D[e] + 1 lys-L[e] + 2 pyr[e] 

2 31 4 glc-D[e] + 2 nh4[e]  
  ³ 4 h2o[e] + 7 h[e] + 4 lac-D[e] + 1 lys-L[e] + 2 pyr[e] 

3 31 4 glc-D[e] + 2 nh4[e]  
  ³ 4 h2o[e] + 7 h[e] + 4 lac-D[e] + 1 lys-L[e] + 2 pyr[e] 

4 31 4 glc-D[e] + 2 nh4[e]  
  ³ 4 h2o[e] + 7 h[e] + 4 lac-D[e] + 1 lys-L[e] + 2 pyr[e] 

5 31 8 glc-D[e] + 2 nh4[e] + 2 o2[e]  
  ³ 4 dha[e] + 4 glcn[e] + 4 h2o[e] + 7 h[e] + 1 lys-L[e] + 2 pyr[e] 

6 31 8 glc-D[e] + 6 nh4[e]  
  ³ 4 ala-L[e] + 8 dha[e] + 8 h2o[e] + 7 h[e] + 1 lys-L[e] + 2 pyr[e] 

7 31 6 glc-D[e] + 2 nh4[e]  
  ³ 6 dha[e] + 4 h2o[e] + 5 h[e] + 2 lac-D[e] + 1 lys-L[e] + 2 pyr[e] 

8 31 4 glc-D[e] + 2 nh4[e]  
  ³ 4 h2o[e] + 7 h[e] + 4 lac-D[e] + 1 lys-L[e] + 2 pyr[e] 

9 31 3 glc-D[e] + 4 nh4[e]  
  ³ 2 ala-L[e] + 6 h2o[e] + 5 h[e] + 1 lys-L[e] + 2 pyr[e] 

10 31 5 glc-D[e] + 4 nh4[e]  
  ³ 8 h2o[e] + 8 h[e] + 2 lac-D[e] + 2 lys-L[e] + 4 pyr[e] 

Table 3: 10 shortest EFMs using a glucose-based medium. 

Figure 4 displays the first 10 EFMs for this second problem. As in Figure 3, most frequent reactions (among the 
10 shortest EFMs) have thicker arrows and numbers in brackets represent the number of EFMs in which a reac-
tion participate. Reactions with the name abbreviation in white boxes belong to glycolysis, whilst those reactions 
in grey boxes correspond to the Entner-Doudoroff pathway. Compounds removed in Figure 3 were also removed 
here for the sake of simplicity.  

In Figure 4, it can be observed that there are three main pathways conducting the conversion of glucose-6-
phosphate (g6p) into pyruvate: Entner-Doudoroff, glycolysis and a pathway whose existence has been recently 
hypothesized. The latter differs from glycolysis due to the conversion of fructose-6-phosphate (f6p) into 
glyceraldehyde-3-phosphate (g3p) using dihydroxyacetone (dha) as intermediate [15], [24]. Nevertheless, the 
toxicity of dha and the rapid conversion of this compound into methylglyoxylate, which is also toxic to the cell, 
make the catalysis of glucose through this alternative pathway highly improbable [20]. Note here that our ap-
proach could easily be modified to make dha never appear in the solution. 

From Figure 3 and Figure 4, it is clear that shortest EFMs include specific reactions to regenerate cofactors, e.g. 
reactions consuming extracellular protons (h[e]) in Figure 3 or producing AMP (amp) in Figure 4. This fact 
makes the solution more difficult to analyze and includes information that is already known by biochemists, 
namely the concept of moiety conservation [11]. In order to overcome this issue we removed the balancing con-
straints of some cofactors because they often belong to such moieties. The list of additional external metabolites, 
including some cofactors, was defined in Table 1. 
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Figure 4: Representation of 10 shortest EFMs in a glucose-based medium. 

Table 4 shows the 10 shortest EFMs for our last problem, in which we used glucose as main carbon and an addi-
tional set of external metabolites which include some cofactors. EFMs are now more comprehensive. One of the 
main improvements places is the small number of EFMs containing by-products. This means that the carbon 
source is completely converted into L-lysine and consequently the yield is higher. The second shortest EFM has 
a 1:1 ratio of molecules of L-lysine produced per glucose consumed. Indeed, 7 of the EFMs presented here have 
this 1:1 ratio. 

K L Overall Equation 

1 24 1 atp + 2 glc-D[e] + 2 nad + 4 nadph + 2 nh4[e]  
³ 1 amp + 2 dha[e] + 2 h2o + 1 h[e] + 1 lys-L[e] + 2 nadh + 4 nadp + 2 pi 

2 24 1 atp + 1 glc-D[e] + 1 h + 2 nad + 4 nadph + 2 nh4[e]  
³ 1 adp + 3 h2o + 1 h[e] + 1 lys-L[e] + 2 nadh + 4 nadp + 1 pi 

3 25 2 atp + 1 glc-D[e] + 1 nad + 3 nadph + 2 nh4[e]  
³ 2 adp + 2 h2o + 1 h + 1 lys-L[e] + 1 nadh + 3 nadp + 2 pi 

4 25 2 atp + 1 glc-D[e] + 1 nad + 3 nadph + 2 nh4[e]  
³ 1 adp + 1 amp + 1 h2o + 1 h + 1 h[e] + 1 lys-L[e] + 1 nadh + 3 nadp + 3 pi 

5 25 1 atp + 2 glc-D[e] + 1 h[e] + 2 nad + 4 nadph + 2 nh4[e]  
³ 1 adp + 2 dha[e] + 3 h2o + 1 h + 1 lys-L[e] + 2 nadh + 4 nadp + 1 pi 

6 25 1 atp + 1 glc-D[e] + 2 nad + 4 nadph + 2 nh4[e]  
³ 1 amp + 2 h2o + 1 h[e] + 1 lys-L[e] + 2 nadh + 4 nadp + 2 pi 

7 25 5 atp + 1 glc-D[e] + 3 h2o + 2 nad + 4 nadph + 2 nh4[e]  
³ 3 adp + 2 amp + 5 h + 1 h[e] + 1 lys-L[e] + 2 nadh + 4 nadp + 7 pi 

8 25 5 atp + 2 glc-D[e] + 4 h2o + 2 nad + 4 nadph + 2 nh4[e]  
³ 2 adp + 3 amp + 2 dha[e] + 6 h + 1 h[e] + 1 lys-L[e] + 2 nadh + 4 nadp + 8 pi 

9 25 4 atp + 1 glc-D[e] + 2 h2o + 2 nadph + 2 nh4[e]  
³ 2 adp + 2 amp + 4 h + 1 h[e] + 1 lys-L[e] + 2 nadp + 6 pi 

10 25 5 atp + 1 glc-D[e] + 4 h2o + 2 nad + 4 nadph + 2 nh4[e]  
³ 2 adp + 3 amp + 6 h + 1 h[e] + 1 lys-L[e] + 2 nadh + 4 nadp + 8 pi 

Table 4: First 10 shortest EFMs using a glucose-based medium and excluding cofactors from the set of internal compounds. 
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Figure 5 depicts the shortest EFM that has a better yield. Note here that grey compounds are external com-
pounds. It is possible to identify glycolysis as the glucose catabolic pathway. Glycolysis is one of the most effi-
cient pathways converting glucose to pyruvate. The latter is then used in the biosynthesis of L-lysine starting 
from L-aspartate. L-lysine contains 2 nitrogen atoms and, from Figure 5, it can be identified that the import of 
ammonia indeed occurs, requiring the use of 2 NADPH. The function of akg and L-glutamate (glu-L) carrying 
the import of nitrogen is also visible in Figure 5. Note here that curved lines linking grey nodes are associated 
with different moieties, such as ATP and ADP. This was also used in Figure 1. In the case of reactions SDPTA 
and ASPTA, curved lines help to understand which metabolites are substrates or products, e.g. akg and sl26da 
are substrates in the reaction catalyzed by SDPTA when the forward direction is taken, being glu-L and sl2a6o 
products. 

Figure 5: Shortest EFM with better lysine per glucose ratio.

4 Discussion 
In this paper we have introduced a novel optimization method to compute the K-shortest EFMs. We have illus-
trated that our approach can be applied to compute the full the set of EFMs. Our procedure is not particular effi-
cient for large-sized metabolic networks. However, the underlying flexibility of linear optimization and feasibil-
ity in large systems enables us to explore particular subsets of EFMs. For illustration, we applied our approach to 
analyse monosaccharide metabolism and L-lysine biosynthesis pathways. 

As opposed to other approaches [14], [16], we constrained fluxes (tr) to have integer values. An alternative for-
mulation of the K-shortest EFMs problem using continuous fluxes was also tested. However, computation time 
for this case far exceeds the formulation presented here. Since most biochemical reactions do have integer 
stoichiometric coefficients, our integrality condition is suitable. Note that the biomass reaction presented in the 
genome-scale model of E. coli used here [10] was excluded from the reactions set.  

As a future direction, we plan to expand our current formulation to include multiple constraints, similar to Equa-
tion (10) for L-lysine, such that the non-decomposability condition is satisfied. As noted in the Results section, 
in this paper we only focus on EFMs producing L-lysine. By minimising the number of reactions, our formula-
tion clearly satisfies the non-decomposability condition. However, were we meant to calculate EFMs that con-
sume glucose (Equation 11) and produce L-lysine, the non-decomposabilty may not be satisfied. Indeed, our 
model may obtain two different EFMs, namely one consuming glucose and other producing L-lysine. Further 
research is needed to clarify this issue.   

With respect to the analysis of the results obtained, it is clear that the definition of the problem is essential so as 
to obtain a meaningful solution. We started by formulating a very general problem. We found that these results 
did not fulfil our expectations in terms of how the main carbon source, glucose, is converted into the desired 
product, L-lysine. Instead, other carbon sources were used. Results were improved by imposing a medium with-
out amino acids in the second problem. However, balancing equations for cofactors still made the solution diffi-
cult to interpret.  
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A correct solution was achieved in the last problem formulation by including additional information to the net-
work, specifically the concept of moiety conservation. The moiety conservation for a particular set of com-
pounds implies that their concentration remains constant due to the high number of reactions where they can be 
interconverted. The classical example is the phosphate moiety represented by AMP, ADP, ATP, orthophosphate 
and pyrophosphate. In order to reflect this concept, some of these metabolites were excluded from being bal-
anced. Nevertheless, the definition of external metabolites will always depend on the problem that is going to be 
studied. Problems may arise if the set of external metabolites is too large, since we increase the degrees of free-
dom of the system. 

In summary, we showed that our approach partially overcomes the combinatorial explosion associated with the 
calculation of EFMs, by selecting specific EFMs, the shortests, from the solutions space. Thus our approach is a 
useful tool to calculate specific EFMs in larger metabolic networks, which was previously thought to be very 
hard [1]. 
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