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Abstract. Construction of dynamic models of large scale metabolic networks is one of the central
issues of engineering of living cells. However, construction of such models are often hampered by a
number of challenges e.g. data availability, compartmentalization and parameter identification coupled
to design of in vivo perturbations. As a solution to the latter, short-term perturbation experiments are
proposed and are proven to be a useful experimental method to obtain insights on the in vivo kinetic
properties of metabolic pathways.

The aim of this work is to construct a kinetic model using the available experimental data obtained via
short term perturbation experiments, where the steady state of a glucose limited anaerobic chemostat
culture of Saccharomyces cerevisiae was perturbed. In constructing the model, we first determined the
steady state flux distribution using the data prior to the glucose pulse and the known stoichiometry.
For the rate expressions, we used approximative linlog kinetics, which allows the enzyme-metabolite
kinetic interactions to be represented by an elasticity matrix. We performed a priori model reduction
based on time-scale analysis and parameter identifiability analysis allowing the information content of
the experimental data to be assessed. The final values of the elasticities are estimated by fitting the
model to the available short term kinetic response data.

The final model consists of 16 metabolites and 14 reactions. With 25 parameters, the model adequately
describes the short term response of the cells to the glucose perturbation, pointing to the fact that the
assumed kinetic interactions in the model are sufficient to account for the observed response.

1 Introduction
Thanks to the ongoing research efforts on the different “-ome levels”, our understanding of cellular systems is
increasing every day. Yet, due to the high complexity of the cell and the vast amount of interactions between
metabolites, proteins and genes, there are several issues to be further explored. Construction of large scale dynamic
models is one of these central issues in further concieving and engineering such systems.

Nevertheless, construction of models predicting cellular behavior is often hampered by a number of challenges
ranging from data availability to compartmentalization and from parameter identification to design restrictions of
in vivo perturbations. To begin with, while the list of quantitatively measured metabolites with high precision
techniques is increasing, the list is far from being complete. Furthermore, when we deal with cells with multiple
compartments (e.g. yeast), the metabolite measurements are only available as cell-averaged quantities. From
the modeling side, while there have been numerous efforts to construct dynamic models for a number of model
organisms (one recent example is the kinetic model for Escherichia coli presented in [1]), these models usually
suffer from parameter unidentifiability for highly nonlinear, enzyme mechanistics based kinetic rate equations with
a large number of parameters. Apart from the high number of nonlinear parameters, one other major issue in using
mechanistics based kinetics is that the kinetic parameters estimated using data obtained from isolated conditions
(in vitro conditions) do not represent the cellular in vivo behaviour [2].

These fundamental problems emphasize the design of perturbation experiments that would yield data reflecting
in vivo conditions. Additionally, providing an experimental design that would isolate individual omic levels is
important in disentangling the interactome riddle. Focusing on the metabolome level, short term stimulus response
experiments are becoming more and more common practice and are proven to be a useful experimental method
to obtain insights on the in vivo kinetic properties of metabolic pathways. This approach consists of perturbing
a well-characterized culture state by external stimuli and subsequently monitoring the response of the intra- and
extracellular metabolites over a short period of time (<200 s). Recent examples of such data are presented in [3]
and [4]. During this time window, it may be assumed that enzyme concentrations do not change, allowing the
observed responses to be attributed to kinetic interactions at the metabolome level alone.

Being overwhelmed by available experimental data obtained via short term perturbation experiments, this work
aims at presenting a modeling framework that would facilitate the construction of (preferably large scale) kinetic
models using such data, while providing solutions to the above mentioned challenges. We aimed to obtain a kinetic
description of glycolysis in yeast under anerobic conditions using the data presented in [5].
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2 Background
2.1 Construction of mathematical model for metabolic reaction networks

Constructing dynamic models for metabolic reaction networks begins with setting up mass balances for each
metabolite, by considering the reaction stoichiometry (summarized in S) and assigning a kinetic expression (v) for
each reaction (eq. 1)

dx
dt

= S ·v−μx v = v(x,e, p) (1)

Traditionally, the kinetics of each reaction is described by Michaelis-Menten type mechanistics kinetic expressions.
The shortcomings of such approach being mentionned, approximative kinetics are often used as an alternative to
overcome these problems (for a review see [6]). Among alternative formulations, linlog kinetics have been shown
to be a useful format with its approximation quality for large changes in metabolite levels. In linlog kinetics, every
entitiy is expressed with respect to reference state (eq. 2).

v
J0 =

e
e0 ·

(
i+Ex · ln

( x
x0

)
+Ec · ln

( c
c0

))
Ex,c

i j ≡ εv
x,c (2)

where the superscript 0 denotes the reference state, and the parameters are the elasticity coefficients for intracellular
and extracellular metabolites (ε0

x and ε0
c ), defined within the context of metabolic control analysis (MCA) as:

εv
x = ∂v

∂x
x0

J0 . Several aspects of this formulation were discussed previously [7, 8, 9, 10, 11]

2.2 Time scale analysis and model reduction

Within a cell, numerous processes (metabolite conversion, enzyme synthesis, gene expression, etc. . .) occur simul-
taneously, following a time hierarchy. With respect to given experimental time window, these processes can be
classified under different categories ranging from very fast (equilibrium) to very slow (frozen). Time scale anal-
ysis aims to classify fast and slow processes/pools in the cell. For such classification, we proposed in [8], to use
turn-over time (τ = x0

i/J0
in,i) for each metabolite.

Time scale analysis allows model reduction that is achieved by selecting the fast metabolites in a reaction net-
work (xfast) that have small turnover times relative to the observation window, neglecting their accumulation term
(dxfast/dt ≈ 0) and transforming these dynamic metabolite mass balances to algebraic relations which results in a
simpler system of differential-algebraic equations (eq. 3.)

dxslow

dt
= SslowJ0

(
i+Ex

slow ln

(
xslow

x0
slow

)
+Ex

fast

(
xfast

x0
fast

))
−μxslow

0 = SfastJ0

(
i+Ex

slow ln

(
xslow

x0
slow

)
+Ex

fast

(
xfast

x0
fast

)) (3)

The mass balance for the fast pools can be used to obtain an algebraic relation between fast and slow metabolite
pools (eq. 4)

ln

(
xfast

x0
fast

)
= A · ln

(
xslow

x0
slow

)
Ai j = αk ≡ fk

(
ε,S,J0

)
(4)

Using eqs. 3 and 4, we can lump the rates around the fast pools and obtain lumped kinetic expressions involving
only the slow pools.

v
J0 =

e
e0

(
i+Dx ln

(
xslow

x0
slow

))
Dx

i j ≡ δk ≡ fk(ε,α) (5)

2.3 A priori parameter identifiability analysis

One of the important challenges in dynamic modeling is to perform the parameter identifiability analysis, i.e. assess
the information content of the data, given the model. Traditionally, this is performed by first constructing an initial
parametrized model, then performing sensitivity analysis afterwards. Recently we have shown in [8] that the use of
linlog kinetics allows an alternative method for a priori parameter identifiability analysis, allowing subsequently
efficient parameter estimation.

The analysis is based on matrix A in eq. 4 and Dx in eq. 5. The entries of these matrices can be estimated directly
from the available measurements. Since each entry of this matrices contain the lumped ε-parameters, it is staight
forward to determine for which ε-parameter combination, a value can be estimated.
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2.4 Estimation of elasticity parameters from dynamic data

While the elaborate details of estimation of elasticity parameters in eq. 2 from transient data has been reported
elsewhere [7], we briefly summarize the important points of the procedure here. Considering the mass balance in
eq.1, replacing linlog kinetics (eq. 5) for each reaction yields

dx
dt

= S ·J0 · e
e0 ·

(
i+Dx · ln

( x
x0

))
−μ ·x

In short term perturbation experiments, the enzyme activities can be assumed to remain constant, leading to e = e0,
allowing this term to be omitted. Further, at steady state S ·J0 · i = 0. Implementing these and integrating the mass
balance yields:

Δx+ μ
∫ ti+1

ti
xdt = S ·J0 ·Dx

∫ ti+1

ti
ln

( x
x0

)
dt (6)

An important feature of eq. 6 is that, while containing several terms, the parameters (Dx) appear in linear fashion,
so that it can easily be re-written in a standard linear model form (a = Y ·b with a = a(x,μ), Y = Y(S,J0,x),
b = b(ε,δ )). This important feature allows the parameters to be estimated via linear regression.

3 Case study
As a case study for constructing the dynamic model, we considered the dynamic metabolome data obtained via
short term glucose perturbation experiments to an anaerobic glucose limited chemostat fermentation of Saccha-
romyces cerevisiae [5]. The reference steady state metabolite levels and uptake and secretion rates are given in
Table 1, and the response of the system to the glucose perturbation is presented in Figure 1.
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Figure 1: Available experimental data obtained from [5]. Metabolite levels are given in fold changes with respect to the
reference state (presented in Table1)
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Table 1: Reference conditions for the case study. Further details on experimental conditions can be found in [5]. Biomass

(CX) is in gDW/L, Dilution rate (D) is in h−1, metabolites levels are in μmol/gDW (intracellular) and in mmol/L
(extracellular). The q-rates and the intracellular fluxes are given in mmol/gDW/hr

X0

G6P 1.67
F6P 0.25
FdP 19.2
G3P 0.38

2PG+3PG 0.19
PEP 0.053

Pyruvate 0.79

C0

Gext 0.62
EtOH 52.68
Glyc 4.31

J0

JIN 2.44 JPGK 4.62
JHK 2.44 JPGM 4.62
JPGI 2.44 JGAPDH 4.62
JPFK 2.44 JENO 4.62
JALD 2.44 JPYK 4.62
JG3PDH 0.25 JPDC 4.62
JGPP 0.25 JADH 4.62

D = 0.065, CX= 6.3

-qs 2.8
qCO2

4.8
qEtOH 4.3

qAcAld 0.86 10−3

qGlycerol 0.31

Table 2: The initial elasticity matrix for the skeleton model, considering only substrates and products, allosteric interac-
tions are omitted

Gext Gin G6P F6P FdP DHAP GAP G3P Glyc BPG 3PG 2PG PEP PYR AcAld EtOH ATP NAD

vIN ε1 ε2 · · · · · · · · · · · · · · · ·
vHK · ε3 ε4 · · · · · · · · · · · · · ε5 ·
vPGI · · ε6 ε7 · · · · · · · · · · · · · ·
vPFK · · · ε8 ε9 · · · · · · · · · · · ε10 ·
vALD · · · · ε11 ε12 ε13 · · · · · · · · · · ·
vTPI · · · · · ε14 ε15 · · · · · · · · · · ·

vG3PDH · · · · · ε16 · ε17 · · · · · · · · · ε18

vGPP · · · · · · · ε19 ε20 · · · · · · · · ·
vGAPDH · · · · · · ε21 · · ε22 · · · · · · · ε23

vPGK · · · · · · · · · ε24 ε25 · · · · · ε26 ·
vPGM · · · · · · · · · · ε27 ε28 · · · · · ·
vENO · · · · · · · · · · · ε29 ε30 · · · · ·
vPYK · · · · · · · · · · · · ε31 ε32 · · ε33 ·
vPDC · · · · · · · · · · · · · ε34 ε35 · · ·
vADH · · · · · · · · · · · · · · ε36 ε37 · ε38

4 Results
4.1 Constructing the Skeleton Model

Considering the experimental context (glucose limited anaerobic fermentation), we use the network shown in
Figure 2(a) depicting glycolysis with ethanol and glycerol formation from glucose to establish the mass balances.
Branching towards storage carbohydrate synthesis pathway, pentose phosphate pathway (PPP), and TCA have
been omitted, since under these conditions, it can be assumed that the production of ethanol through glycolysis
is the major source of energy for S. cerevisiae and that the contribution of these branches to the overall carbon
balance is small. Further, we assumed that the growth rate does not change during the glucose perturbation. Next,
the intracellular fluxes at the reference state were calculated using the uptake and secretion rates and flux balance
analysis (Table 1)

Setting the nonzero entries of the elasticity matrix Having the stoichiometric matrix obtained from Figure 2(a)
and the reference fluxes from Table 1, the next step is to select the non-zero entries of the elasticity matrix based
on known enzyme-metabolite kinetic interactions. At first, it was assumed that there are no allosteric interactions
and that each reaction is affected by its substrates and products only. As such, the elasticity matrix connecting 15
rates and 18 metabolites, with 38 non-zero entries is presented in Table 2

Lumping unmeasured metabolites As mentioned, one of the common challenges in dynamic modeling of
metabolic reaction networks is that, not every metabolite is measured. Comparing the network in Figure 2(a) and
the available data in Figure 1, we note that for Gin, DHAP, GAP, BPG, NAD and NADH there are no measurements,
and that for the 2PG and 3PG pools, only the sum can be measured. For these metabolites, we assume either that
the corresponding reaction (e.g. vPGM for 2PG and 3PG) is at pseudo equilibrium or that the respective pool (e.g.
Gin) is at pseudo steady state so that we lump the rates around these pools (vIN and vHK).

Additionally, while NAD and NADH are not measured they are kept in the network since these can be calculated
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Figure 2: Metabolic network describing glycolysis in S. cerevisiae with ethanol and glycerol formation. a: The initial
full network. b: Final reduced network after time scale analysis based model reduction

using equilibrium assumptions. We consider the following net equilibrium from AcAld to EtOH:

AcAld+NADH � EtOH+NAD

Then, the ratio of NAD/NADH follows as

ln

(
NAD/NADH

NAD0/NADH0

)
= ln

(
AcAld

AcAld0

)
− ln

(
EtOH

EtOH0

)
Furthermore, we know that during the anaerobic production of ethanol, the energy metabolite ATP is exclusively
produced in glycolysis, while it is consumed by many reactions and processes outside our model boundaries. For
this, ATP and ADP are only considered as input of the metabolic network, rather than being predicted by the
model. Similarly, the calculated redox metabolites NAD and NADH are also considered as input of the metabolic
network. In what follows, we consider the ratio ATP/ADP and NAD/NADH for further analysis, yet note those ratios as
ATP and NAD respectively for the sake of briefness.

From the concentration profiles in Figure 1, the ethanol and glycerol profiles show, although noisy, a flat response.
This is to be expected as steady state metabolite levels of both ethanol and glycerol are already very high, so that
the effect of the additional perturbation can not be observed on this experimental time window therefore, both the
elasticity of ethanol on vADH and the elasticity of glycerol on vGPP cannot be estimated and were removed from
the elasticity matrix.

4.2 Time scale analysis and model reduction

Reactions at pseudo equilibrium For these reactions, equations similar to eq. 7 are constructed, the new lumped
pools are defined in such a way to eliminate the reaction at equilibrium from the mass balance. For the metabo-
lites G6P and F6P, it is known that the conversion is a pseudo equilibrium rate, hence the dynamics of F6P is
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Table 3: The turnover times of the metabolites in the network of figure 2(a), calculated by dividing the metabolite level
at steady state by the total incoming flux to the corresponding pool. For FdP′, the turnover time is actually higher since
the pool contains GAP and DHAP, but since there is no measurement on those, only the level of FdP is taken into account

Metabolite τ (s) Metabolite τ (s)
X6P 2.83 2PG+3PG 0.14
FdP′ 28.3 PEP 0.041
G3P 5.31 Pyruvate 0.61

algebraically linked to G6P:

ln

(
F6P

F6P0

)
= ln

(
G6P

G6P0

)
(7)

Since, in this case, we have the measurements for both metabolites the adequacy of such assumption can be
checked by monitoring the mass action ratio during the perturbation experiment (Figure 3(a)). Lastly, the pool
X6P is defined in such a way to eliminate vPGI from the mass balance (eq. 8).

X6P = F6P+G6P
dG6P/dt = vHK− vPGI
dF6P/dt = vPGI− vPFK

dX6P

dt
= vHK− vPFK (8)

The model reduction is achieved by defining the equilibrium pool (X6P) for each reaction assumed to be at pseudo
equilibrium (vPGI) and then removing the pseudo equilibrium reaction and the individual pools (G6P and F6P)
from the mass balance. In our case study, in addition to vPGI, vADH and vPGM, the same procedure is also applied
to vALD and vTPI and the equilibrium pool FdP′ = FdP + GAP + DHAP is defined.

Metabolites at pseudo steady state To inspect which metabolites are fast compared to the rest, time scale
analysis was performed by calculating the turn over time for each of the remaining metabolite pools. The resulting
turnover times are shown in Table 3.

From this table, it can be concluded that PEP, 2PG+3PG and PYR have the smallest turnover times, hence in
addition to Gin and BPG, these pools can be assumed to be at pseudo steady state. This implies that the mass
balances for these metabolites degenerate into algebraic relations. Considering e.g. Gin, the dynamic mass balance
becomes:

vIN ≈ vHK

substituting the elasticities and rearranging yields

ln

(
Gin

Gin0

)
= α1 ln

(
Gext

Gext0

)
+α2 ln

(
G6P

G6P0

)
+α3 ln

(
ATP

ATP0

)
α1 =− ε1

ε2− ε3
α2 =

ε4

ε2− ε3
α3 =

ε5

ε2− ε3

If the measurements would be available for each metabolite in the above equation, we could estimate the α-
parameters and check the adequacy of the linear model. The model reduction is achieved by lumping the rates
around Gin, removing Gin from the mass balance and defining the rate expression for the lumped reaction rate by
substituting the degenerated algebraic relation into one of the rates for Gin (eq. 9)

vIN−HK = J0
IN−HK

(
1+δ1 ln

(
Gext

Gext0

)
+δ2 ln

(
G6P

G6P0

)
+δ3 ln

(
ATP

ATP0

))
(9)

δ1 = ε1 + ε2α1 δ2 = ε2α2 δ3 = ε3α3

Following the same procedure, for the fast metabolites, BPG, 2PG+3PG, PEP and PYR, the algebraic relations
containing α-parameters are constructed.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln

(
BPG

BPG0

)
ln

(
XPG

XPG0

)
ln

(
PEP

PEP0

)
ln

(
PYR

PYR0

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
α4 α5 α6

α7 α8 α9

α10 α11 α12

α13 α14 α15

⎤⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

ln

(
FdP

FdP0

)
ln

(
NAD

NAD0

)
ln

(
ATP

ATP0

)

⎤⎥⎥⎥⎥⎥⎥⎦
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α4 =
2ε21 (ε25 ε34 (−ε30 + ε31)+ ε25 ε30 ε32− ε29 ε31 ε34)

Ξ

α5 =
ε23 (ε25ε34 (−ε30 + ε31)+ ε25 ε30 ε32− ε29 ε31 ε34)

Ξ
α6 =

ε34 (ε25 ε30 ε33 + ε26 ε29 ε31)
Ξ

α7 =
2ε21 ε24 (+ε31 ε34 + ε30 ε32− ε30 ε34)

Ξ
α8 =

ε23 ε24 (+ε31 ε34 + ε30 ε32− ε30 ε34)
Ξ

α9 =
+ε24 ε30 ε33 ε34− ε22 ε30 ε33 ε34 + ε22 ε26 ε30 ε34− ε22 ε26 ε31 ε34− ε22 ε26 ε30 ε32

Ξ

α10 =
2ε21 ε24 ε29 (+ε32− ε34)

Ξ
α11 =

ε23 ε24 ε29 (+ε32− ε34)
Ξ

α12 =
−ε22 ε26 ε29 ε32 + ε22 ε26 ε29 ε34 + ε22 ε25 ε33 ε34 + ε24 ε29 ε33 ε34− ε22 ε33 ε29 ε34

Ξ

α13 =
2ε29 ε24 ε31 ε21

Ξ
α14 =

ε29 ε24 ε31 ε23

Ξ
α15 =

−ε22 (ε25 ε30 ε33 + ε26 ε29 ε31)
Ξ

where

Ξ=−ε22 ε25 ε30 ε34 + ε22 ε25 ε31 ε34 + ε22 ε25 ε30 ε32 + ε24 ε29 ε31 ε34− ε22 ε29 ε31 ε34

Having experimental data, a subpart of the entries of matrix A can be estimated. This results in

A =

⎡⎢⎢⎣
α4 α5 α6

0.1808 0.3281 −0.2398
−0.4187 0.4167 −0.4943
−0.6825 0.3448 −0.6033

⎤⎥⎥⎦
The prediction of the fast metabolites from the slow FdP, ATP and NAD are presented in figure 3.
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Figure 3: Considering time-scale analysis for model reduction. a: the pools G6P and F6P are in equilibrium, b–d the
pools 2PG+3PG, PEP and PYR are pseudo steady state pools, calculated from ATP, FbP and NAD. In each case, dots
represent the available experimental data, the line represents the model prediction

At last, the model is reduced by lumping the rates around the removed metabolites. In the final model, vGAPDH−ADH

is the lumped reaction of the original vGAPDH, vENO, vPYK and vADH reactions.

4.3 A priori parameter identifiability analysis

Having reduced the model based on the time scale analysis, a priori parameter identifiability analysis can be
performed. This is performed by analyzing the the matrices A and Dx. Note that the elasticities of the lumped
rates are a combination of the original elasticities for the unreduced model (table 2). Taking vPYK rate expression
as example and replacing PEP and PYR lead to the lumped expression for vGAPDH−ADH

vGAPDH−ADH = J0
GAPDH−ADH ·

(
1+δ4 ln

(
FdP

FdP0

)
+δ5 ln

(
NAD

NAD0

)
+δ6 ln

(
ATP

ATP0

))
and δ1, δ2 and δ3 are defined as a function of the ε and α parameters

δ4 = ε31 α10 + ε32 α13 δ5 = ε31 α11 + ε32 α14 δ6 = ε31 α12 + ε32 α15 + ε33

The nonlinear parameter estimation will lead to δ -parameters, and together with the estimated α-parameters, ε31,
ε32 and ε33 can be calculated.
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Table 4: Elasticity matrix for the reduced network in figure 2(b)

Gext X6P FdP G3P Glyc EtOH ATP NAD

vIN−HK δ1 δ2 · · · · δ3 ·
vPFK · ε8 ε9 · · · ε10 ·

vG3PDH · · ε16 ε17 · · · ε18

vGPP · · · ε19 · · ·
vGAPDH−ADH · · δ4 · · · δ5 δ6

4.4 Estimation of elasticities, calculation of control coefficients

For the metabolic network shown in figure 2(b) we considered the elasticity matrix presented in Table 4, generated
an initial estimate by solving eq. 6 and estimated the final values via a nonlinear optimization routine, minimizing
the squared error between the simulated and experimental values. Figure 4 shows the simulation with the elastic-
ities obtained from the nonlinear optimization procedure and the original experimental data. The elasticities are
shown in table 5. It can be seen that most concentration profiles are estimated reasonably well.

Having estimated the elasticities, we also calculated the concentration, flux and response coefficients for our system
using estimated elasticities and the MCA theorems as:

Cx =−
(

SJ0 Ex
)−1

SJ0 CJ = I+Ex Cx RJ = CJ Ec

The calculated control and response parameters for the ethanol flux are given in Table 5. From this table it can be
seen that the ethanol production is mostly controlled by the uptake rate and the available ATP.

Table 5: Final estimates of the elasticities, the calculated control and response coefficient for the ethanol flux

Gext X6P FdP G3P EtOH Glycerol ATP NAD

vIN−HK 1.37 0.13 · · · · 0.34 ·
vPFK · 2.055 2.785 · · · 1.0049 ·

vG3PDH · · 8.101 -0.177 · · · 1.3323
vGPP · · · 5.32 · · · ·

vGAPDH−ADH · · 10.935 · · · 2.612 0.293

CJ
GAPDH−ADH

eIN−HK 1.06
ePFK -0.07

eG3PDH -0.05
eGPP 0.01

eGAPDH−ADH 0.05

RJ
GAPDH−ADH

Gext 1.46
ATP 0.57

NAD -0.05

For parameter identifiability, using the estimated values of the α and δ parameters, the individual elasticities for
vGAPDH−ADH are found to be: ε31 = 39.64, ε32 = −40.34, ε33 = −4.45. Here, it should be noted that among 18
kinetic parameters (ε21→ ε38), only 12 of them (6 α’s, 3ε’s) can be identified.

5 Discussion and Conclusions
In this work, we presented our model biulding scheme for construction of dynamic models for metabolic reaction
networks. As a case study, we developed a kinetic description for glycolysis in yeast cells grown under anaerobic
carbon limited conditions. The constructed model was used as data scaffold and served, among many others, to
assess the information content of the available highly dynamic metabolome data.

In developing the model, from the beginning, i.e. defining model boundaries, until the end, e.g. parametrization
of the model, there are several points considered and adjusted to concur with the case study, e.g. exclusion of PPP,
TCA and storage pathways considering cultivation conditions or time scale based model reduction considering the
turn-over times. Overall, the constructed model describes adequately the response of the intracellular metabolites
to the given glucose perturbation.

While the available dataset is highly dynamic, by implementing time scale analysis based, a priori model reduction,
we concluded that, the dynamics of a number metabolites, i.e. fast metabolites, are actually not independent but
rather their dynamics are dictated by the slow metabolites. The assumption of the insignificance of the differential
term for the fast metabolites can be checked by inspecting the adequacy of the algebraic relation (eq. 4). This is
presented in figure 3, and we conclude that the model reduction is justified.
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Figure 4: Simulation of the glucose perturbation with the estimated parameters. The metabolites are presented in fold
changes.

In the proposed modeling framework, the use of linlog kinetics is central both in a priori model reduction and
parameterization of the final model. Linlog kinetics is linear in parameters while adequately describing system
dynamics. The linearity property is useful especially when carrying parameter identifiability analysis, since the
parameter estimation problem (eq. 6) can be translated into a linear model (a = Y · b) and the design matrix Y can
be further analyzed using the standard tools of linear algebra as described in [8]. Furthermore, the use of linlog
kinetics allows directly interpreting the estimated parameters since these are theoretically defined as the elasticities
in MCA. Having the local elasticities, calculation of global properties as control coefficients is straight forward.

The MCA analysis shows that most of the control is on the upper part of glycolysis, in the uptake reaction. This is
understandable since the model reduction shows that the lower part of the glycolysis follows the dynamics of the
slow metabolites.

Having constructed an initial model, the next step would be to perform model based experimental design to obtain
further data on parts of the network where the available information was not enough to estimate a subpart of
the parameters. Furthermore, in the subsequent rounds of model building, additional interactions, e.g. allosteric
effects, can be incorporated into the model. As an example, a well-known allosteric effect of FbP to vPYK is
excluded from the current model in order to prevent over parameterization. This is justified since if εvPYK

FbP would
be introduced into the model, then it would only appear in the definition of δ4 and the allosteric effect would
not be separately observable. Yet this interaction can be incorporated in a later stage of the model provided with
additional information.
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