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Abstract. The macroscopic behavior of stationary micromagnetic phenomena can be modeled by a
relaxed version of the Landau-Lifshitz minimization problem first introduced by DESIMONE in 1993,
[5], where the magnetic potential u is linked to the magnetization m through the magnetostatic Maxwell
equation. In the case of large and soft magnets Ω, one neglects the exchange energy and convexifies the
remaining energy densities. In our discretization we enforce the pointwise side constraint |m| ≤ 1 by a
penalization strategy and we replace the entire space �d in the energy functional E and in the potential
equation by a bounded Lipschitz domain Ω̂ containing Ω. Since conforming elements appear to be un-
stable for the pure Galerkin discretization (cf. [3]) we append to the Galerkin discretization a consistent
stabilization term. We reformulate the minimization problem in terms of the augmented Lagrangean,
which leads us to a so called saddle-point formulation for the corresponding Euler-Lagrange equations.
In this paper we discuss the well-posedness of the discrete problem and the a priori error analysis. Fur-
thermore we introduce a residual-based a posteriori error estimator and comment on adaptive strategies.

1 Introduction
In rigid ferromagnetic bodies which cover a domain Ω ⊂ �d , d = 2,3, the mathematical description of magnetiza-
tion states m : Ω → �d−1 := {x ∈ �d : |x| = 1} goes back to the classical model by Landau and Lifshitz [2], where
the magnetization solves the minimizing problem (MPα)

min
|m|=1 a.e.

E(m) (1)

of the energy functional

E(m) := α
∫

Ω
|∇m|2 +

∫
Ω

φ(m)−

∫
Ω

f ·m+
1
2

∫
�d

|∇u|2. (2)

Here, the magnetic potential u : �d → � is related to m by the magnetostatic Maxwell equation

div(∇u− χΩm) = 0 in D
′(�d). (3)

The four terms in (2) favor different properties of the minimizer. The first term favors non-oscillating structures,
where α > 0 denotes a (typically very small) exchange parameter (length scale). The non-convex anisotropy
φ ∈ C ∞(�d ,�≥0) in the second term models crystallographic properties of the ferromagnet. The third term with
the applied exterior field f ∈ L2(Ω,�d) favors magnetizations aligned with f and the last term is a measure of divm.

In applications, one often considers “macroscopic” bodies, where diam(Ω) is large compared with the length scale
α . On the one hand, features on small scales cannot be resolved numerically, but on the other hand many quantities
of interest do not depend on these small scale features. This fact justifies eliminating the first term in the energy
functional (2) by setting α = 0. By doing this, we end up by the so called large-body limit of micromagnetics with
the goal to find minimizers m : Ω → �d−1 of the problem (MP0):

min
|m|=1 a.e.

E�b(m) (4)

with
E�b(m) :=

∫
Ω

φ(m)−

∫
Ω

f ·m+
1
2

∫
�d

|∇u|2. (5)

under the side constraint (3).
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2 Relaxation
Because of the non-convex side constraint given by the pointwise length condition

|m(x)| = 1 for almost every x ∈ Ω

and the non-convex anisotropy density φ , (MP0) turns out to be a non-convex minimization problem. Then the
energy functional E�b may not have minimizers but only infimizing sequences [7]. To overcome this difficulty,
one strategy is to relax the problem (MP0) by convexification [5]. We consider the relaxed energy minimization
(RMP): Find minimizer(s) m : Ω → �d := {x ∈ �d : |x| ≤ 1} of

min
|m|≤1 a.e.

E∗∗(m) (6)

with
E∗∗(m) :=

∫
Ω

φ∗∗(m)−
∫

Ω
f ·m+

1
2

∫
�d

|∇u|2 (7)

under the side constraint (3).

Here, φ∗∗ denotes the lower convex envelope of φ defined by

φ∗∗(x) := sup{ϕ(x)|ϕ : �d → � convex and ϕ |
�d−1 ≤ φ} for |x| ≤ 1,

so that E∗∗(m) turns out to be a convex energy functional. Following [3], we replace the entire space �d in (3) and
(7) by a bounded Lipschitz domain Ω̂ containing Ω. Then the integral over �d in (7) is replaced by an integral over
Ω̂ and the full - space equation (3) simplifies to a PDE on the finite domain Ω̂. In other words, (RMP) is replaced
with (RMPbd): Find minimizer(s) m : Ω → �d of

min
|m|≤1 a.e.

E∗∗
bd (m) (8)

with
E∗∗

bd (m) :=
∫

Ω
φ∗∗(m)−

∫
Ω

f ·m+
1
2

∫
Ω̂
|∇u|2 (9)

under the side constraint
div(∇u− χΩm) = 0 in H−1(Ω̂), (10)

where H−1(Ω̂) denotes the dual space of H1
0 (Ω̂). We refer to [5] for a justification of the following facts concerning

solvability of (RMP):

• E∗∗ is convex and weakly lower semicontinuous. Therefore, the direct method in the calculus of variations
provides the existence of solutions.

• min{E∗∗(m)|m ∈ L2(Ω,�d)} = inf{E�b(m)|m ∈ L2(Ω,�d−1)}

• For each solution m ∈ L2(Ω,�d) of (RMP), there exists an infimizing sequence (mk)k∈N of E�b, which
converges weakly to m in L2(Ω,�d).

• For each infimizing sequence (mk)k∈N of E�b, there exists a weakly convergent subsequence (mk�
) whose

weak limit solves (RMP).
• The minimizers of E∗∗ contain physically relevant informations.

Remark: Mutatis mutandis, the above 5 statements also hold for (RMPbd).

Furthermore, the energy functional E∗∗
bd is Gâteaux differentiable as a function of (u,m), so the corresponding

Euler-Lagrange equations can be formulated. Introducing a further Lagrange multiplier λ for the side constraint
|m| ≤ 1, we get the problem (RPbd): Find u ∈ H1

0 (Ω̂), m ∈ L2(Ω,�d), and λ ∈ L2(Ω) such that∫
Ω̂

∇u ·∇v +
∫

Ω
Dφ∗∗(m) ·n+

∫
Ω

λ m ·n =
∫

Ω
f ·n for all v ∈ H1

0 (Ω̂), n ∈ L2(Ω,�d), (11)

div(∇u− χΩm) = 0 in H−1(Ω̂), (12)

together with
0 ≤ λ , |m| ≤ 1, and λ (1−|m|)+ = 0 almost everywhere in Ω. (13)

Here, we denote by (x)+ := max{x,0} the non-negative part of x.
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Example. Uniaxial materials such as cobalt can be modelled with the aid of the uniaxial anisotropy density

φ : �d−1 → �, φ(x) =
1
2
(1− (e ·x)2) for all |x| = 1,

where e ∈ �d is a given fixed unit vector, called easy axis. φ favors magnetizations m aligned with e. In this case,
the lower convex envelope can easily be computed and reads, e.g. for the case d = 2,

φ∗∗(x) =
1
2

{
(x · z)2 if |x| ≤ 1

∞ else,

where (e,z) is an orthonormal basis of �2, c.f. [8, 5].

We refer to [5] and [3] for the following statements about solvability of (RMPbd) and (RPbd) :

• Any solution of (RMPbd) solves (RPbd) and vice versa.
• Problem (RMPbd) has solutions.
• In the uniaxial case (c.f. the example above), there exists only one solution of problems (RMPbd) and (RPbd),

c.f. [3] for the two-dimensional case and [8] for the three dimensional one.

Following the idea of Yosida regularization, we enforce the side constraint |m| ≤ 1 by a penalization procedure.
The resulting minimization problem (RMPbd,ε) now reads as follows: Given ε > 0, find minimizer (u,m) ∈ X :=
H1

0 (Ω̂)×L2(Ω) of

E∗∗
bd,ε(u,m) :=

∫
Ω

φ∗∗(m)−

∫
Ω

f ·m+
1
2

∫
Ω̂
|∇u|2 +

1
2ε

∫
Ω
(|m|−1)2

+ (14)

under the side constraint
div(∇u− χΩm) = 0 in H−1(Ω̂). (15)

Later on, the penalization parameter ε will be related to the local mesh-size in the discrete version of (14). We
mention that E∗∗

bd,ε is convex, continuous and coercive but now on the entire space X . In particular, (RMPbd,ε) has
solutions, and can equivalently be stated by the corresponding Euler-Lagrange equations (RPbd,ε), see e.g. [4]. We
omit the details.

Saddle-point formulation. Now, our approach for solving the energy minimizing problem is to formulate (14)
and (15) in terms of the augmented Lagrangean. We define

L (u,m; p) := E∗∗(u,m)+ b(u,m; p) for (u,m) ∈ X := H1
0 (Ω̂)×L2(Ω) and p ∈ H1

0 (Ω̂), (16)

where
b(u,m; p) :=

∫
Ω̂
(∇u− χΩm) ·∇p = 〈div(∇u− χΩm), p〉H−1(Ω̂)×H1

0 (Ω)

denotes the usual weak formulation of (15). The saddle-point formulation (SPPbd,ε) of (14) and (15) is

∂L

∂ (u,m)
= 0,

∂L

∂ p
= 0 (17)

and reads in detail: Find (u,m) ∈ X and p ∈ H1
0 (Ω̂) such that

a(u,m;v,n)+ b(v,n; p) =

∫
Ω

f ·n for all (v,n) ∈ X , (18)

b(u,m;q) = 0 for all q ∈ H1
0 (Ω̂), (19)

where (for the uniaxial case and d = 2)

a(u,m;v,n) :=
∫

Ω̂
∇u ·∇v +

∫
Ω
(m · z)(n · z)+

∫
Ω

λε m ·n, (20)

λε :=
1
ε

(|m|−1)+
|m|

, (21)

b(u,m;q) :=
∫

Ω̂
(∇u− χΩm) ·∇q. (22)

It is easy to show that every solution of (SPPbd,ε) solves (RPbd,ε). To see that (SPPbd,ε) is, in fact, equivalent to
(RPbd,ε), let (u,m) be a solution of (RPbd,ε). Existence and uniqueness of the Lagrange multiplier p follows from
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the fact that the bilinear form b in (22) satiesfies an inf-sup or LBB condition. Indeed, for arbitrary q∈H1
0 (Ω̂)\{0}

we obtain
sup

(u,m)∈X\{0}

|b(u,m;q)|

‖(u,m)‖X ‖∇q‖L2(Ω̂)

≥
|b(q,0;q)|

‖(q,0)‖X ‖∇q‖L2(Ω̂)

= 1,

hence
inf

q∈H1
0 (Ω̂)\{0}

sup
(u,m)∈X\{0}

|b(u,m;q)|

‖(u,m)‖X ‖∇q‖L2(Ω̂)

= 1 > 0,

where we define ‖(u,m)‖X :=
(
‖∇u‖2

L2(Ω̂)
+ ‖m‖2

L2(Ω,�d)

)1/2. The triple (u,m, p) then solves (SPPbd,ε). For
uniqueness of (u,m) in the uniaxial case, we refer to the discussion of (RMPbd) and (RPbd) above. We want to
mention that the main difficulties in the uniqueness proof arise from the fact that (20) provides only partial control
over m, c.f. [3, 8].

3 Discretization
Let T̂ := {T1, . . . ,TM} denote a regular triangulation of Ω̂ and T := T̂ |Ω := {K ∈ T |K ⊂ Ω} a subtriangulation
exactly covering Ω. Let

• S1
0(T̂ ) = {u∈ H1

0 (Ω̂) : u|K ∈P1, ∀K ∈ T̂ } be the space of all T̂ -piecewise affine, globally continuous and

• S0(T ) = {m ∈ L2(Ω) : m|K ∈ P0, ∀K ∈ T } be the space of all T -piecewise constant functions.

In addition we use the abbreviation Xh := S1
0(T̂ )× S0(T ). We are now in the position to formulate the discrete

saddle-point problem (SPPh
bd,ε): Find (uh,mh) ∈ Xh and ph ∈ S1

0(T̂ ) such that

ah(uh,mh;v,n)+ bh(v,n; ph) =

∫
Ω

f ·n for all (v,n) ∈ Xh, (23)

bh(uh,mh;q) = 0 for all q ∈ S1
0(T̂ ), (24)

where ah and bh are the restrictions of a and b to Xh ×Xh and Xh ×S1
0(T̂ ), respectively.

Now, we use the fact that the according discrete formulations (RMPh
bd,ε) and (RPh

bd,ε) are equivalent and provide
a solution (uh,mh) in the uniaxial case. Following the same ideas as in the continuous case, we can show the ex-
istence of a solution (uh,mh, ph) of the saddle-point formulation (SPPh

bd,ε). Furthermore, the Lagrange parameter
ph is unique. Uniqueness of (uh,mh) does not follow, since N (bh) 	⊂ N (b), where we define the kernels

N (b) := {(u,m) ∈ X | b(u,m;q) = 0 for all q ∈ H1
0 (Ω̂)}

N (bh) := {(uh,mh) ∈ X | b(uh,mh;q) = 0 for all q ∈ S1
0(T̂ )}.

To ensure uniqueness of a solution (uh,mh), we add a stabilizing bilinear form 〈., .〉σ to the augmented Lan-
grangean for the discrete problem

L
aug(u,m; p) := E∗∗

bd,ε(u,m)+ b(u,m; p)+
1
2
〈(u,m),(u,m)〉σ

and stipulate the following three properties:

• non negativity: 〈(u,m),(u,m)〉σ ≥ 0
• consistency:〈(u,m), .〉σ = 0 for the exact solution (u,m)
• for all (u,m) ∈ N (bh) there holds ‖div(∇u− χΩm)‖2

H−1(Ω̂)
� 〈(u,m),(u,m)〉σ +‖∇u‖2

L2(Ω̂)

⎫⎬⎭ (25)

Remark: The last property will ensure uniqueness of the discrete problem (see Theorem 1 ahead).
We now formulate the stabilized saddle-point problem (SPPh,σ

bd,ε): Find uh ∈ S1
0(T̂ ), mh ∈ S0(T ), ph ∈ S1

0(T̂ )
such that

aσ (uh,mh;v,n)+ bh(v,n; ph) =

∫
Ω

f ·n for all (v,n) ∈ Xh, (26)

bh(uh,mh;q) = 0 for all q ∈ S1
0(T̂ ), (27)

where
aσ (uh,mh;v,n) = a(uh,mh;v,n)+ 〈(uh,mh),(v,n)〉σ .
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Theorem 1 (unique solvability)
For the uniaxial case the discrete problem (SPPh,σ

bd,ε) is uniquely solvable, if 〈., .〉σ satisfies the above properties
(25).

Proof: Let (uh,i,mh,i, ph,i), for i = 1,2 be the solutions of (SPPh,σ
bd,ε). We use the abbreviations e := uh,2 − uh,1,

δ := mh,2 −mh,1, and η := ph,2 − ph,1. From (27), we obtain

〈∇e−δδδ ,∇q〉L2(Ω̂)
= 0 for all q ∈ S1

0(T̂ ),

and hence (e,δδδ ) ∈ N (bh). Equation (26) shows

〈∇e,∇v〉L2(Ω̂)
+ 〈(δδδ · z)z,n〉L2(Ω) +

〈
λε(mh,2)mh,2 −λε(mh,1)mh,1,n

〉
L2(Ω)

+ 〈∇v−n,∇η〉L2(Ω̂)
+ 〈(e,δδδ ),(v,n)〉σ = 0 for all (v,n) ∈ Xh.

For v := e and n := δδδ , this yields

‖∇e‖2
L2(Ω̂)

+‖(δδδ · z)z‖2
L2(Ω) +

〈
λε(mh,2)mh,2 −λε(mh,1)mh,1,δδδ

〉
L2(Ω)

+ 〈(e,δδδ ),(e,δδδ )〉σ = 0.

In [3], it is shown that 〈
λε(mh,2)mh,2 −λε(mh,1)mh,1,δδδ

〉
L2(Ω)

≥ 0.

Non negativity of the bilinear form 〈., .〉σ now leads to

e = 0 and δδδ · z = 0 almost everywhere.

Furthermore,

‖∇ · (∇e−δδδ)‖H−1(Ω̂)
= sup

q∈H1
0 (Ω̂)\{0}

〈∇ · (∇e−δδδ),q〉
‖∇q‖L2(Ω̂)

= sup
q∈H1

0 (Ω̂)\{0}

〈∇e−δδδ ,∇q〉L2(Ω̂)

‖∇q‖L2(Ω̂)

� 〈(e,δδδ ),(e,δδδ )〉σ +‖∇e‖2
L2(Ω̂)

= 0

shows (e,δδδ ) ∈ N (b). In particular, we get together with e = 0

divδδδ = 0 in H−1(Ω̂). (28)

Uniqueness of m in the two-dimensional case now follows in the same way as in [3] by use of the 2D Helmholtz
decomposition.. Finally, the discrete inf-sup condition of the bilinear form bh ensures uniqueness of the Lagrange
multiplier p.

�

Lemma 2 (stabilizing bilinear form) Let E be the edges of Ω∪∂Ω. Define

〈(u,m),(v,n)〉σ := ∑
E∈E

hE

∫
E
[(∇u−m) ·ννν][(∇v−n) ·ννν], (29)

where [·] denotes the jump over an edge and ννν the according normal vector. Then the bilinear form 〈·, ·〉σ has the
properties (25).

Proof: The first two statements are clear. The third statement follows by integration by parts and the applications
of standard finite element techniques.

�

Remark: Furthermore (28) shows [δδδ ·ννν] = 0 for all edges in E and this implies δδδ ∈ H(div,�d). Therefore, we
have divδδδ = 0 in L2(�d) and δδδ has compact support. This observation enables us to prove uniqueness of mh
with smoothing techniques as were first used in [8]. For the uniaxial case this allows one to prove uniqueness of
(SPPh,σ

bd,ε) for 2D and 3D problems, whereas the proof along the lines of [3] is restricted to 2D.

4 A priori error estimate
Theorem 3 (optimal convergence, 2007) Under the regularity assumption (u,m) ∈ H2

0 (Ω̂)×H1(Ω), there holds
the a priori estimate

‖∇(u−uh)‖L2(Ω̂)
+‖(m−mh) · z‖L2(Ω) +‖∇(p− ph)‖L2(Ω̂)

= O(h + ε). (30)
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Proof: see [1] �

Note that estimate (30) is optimal with respect to the local mesh-size h and favors the choice of ε = O(hα) for
α = 1. Numerical experiments in [1] reveal that the choice α ∈ (0,1) dominates the error in the sense that, for
smooth exact solution (u,m), one observes experimental convergence O(hα). Empirically, the estimate (30) thus
is even optimal with respect to ε and ε = O(h) leads in this case to optimal convergence O(h). Throughout the
following experiments, we thus choose the T -piecewise constant penalization function ε = h, where h ∈ L∞(Ω) is
defined by h|K := diam(K).

Numerical experiment 1. In the first numerical experiment we choose a constant exterior field f = [0.6,0]
parallel to the easy axis e = [1,0]. Therefore we have z = [0,1]. Furthermore we choose the magnetic rod Ω =

(−0.5,0.5)×(−2.5,2.5) and the surrounding area Ω̂ = (−5.5,5.5)2. This example is suggested in [3]. Fig 1 shows
two plots of the computed magnetic potential u. On the left-hand-side one sees the magnetic rod together with some
isolines of u, whereas on the right-hand-side a 3D version of u is plotted. As can be seen in Fig 2, the theoretical
prediction for the convergence rates are verified. Although we do not control the error ‖(m−mh) · e‖L2(Ω), as can
be seen in (30), we observe convergence O(h) in the full norm ‖m−mh‖L2(Ω).

In the continuous case, the Lagrange multiplier p turns out to be exactly −u. This relation does not hold in the
discrete case. Here, we only observe convergence of ∇p towards −∇u with almost the same rate as for the error in
∇u and ∇p.

Figure 1: The magnetic potential u with some isolines (left)

101 102 103 104 105
10−3

10−2

10−1

100

1

      1/2
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Figure 2: Error in m (left), ∇u and ∇p (right), where w ≡ p
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5 A posteriori error estimate
For the next theorem we use the following notation:

• e j denotes the j-th canonical unit vector
• K is a triangle of the finite element mesh with area |K|
• E an edge of T with length hE

• (·)Π denotes the L2 - orthogonal projection onto S0(T )

Furthermore we need a Riesz representative for the stabilizing bilinear form 〈·, ·〉σ . This is an element (ũh,m̃h)∈ Xh
such that for fixed (uh,mh) ∈ Xh

〈(ũh,m̃h),(vh,nh)〉Xh×Xh
:= 〈∇ũh,∇vh〉L2(Ω̂)

+ 〈m̃h,nh〉L2(Ω) = 〈(uh,mh),(vh,nh)〉σ

holds, for all (vh,nh) ∈ Xh, where 〈·, ·〉Xh×Xh
denotes the scalar product in the Hilbert space Xh. For the a posteriori

estimate (31), we only need m̃h, which can be computed as

m̃h · e j|K =
1
|K| ∑

E⊂K
hE

〈
[(∇uh −mh) ·ννν],e j ·ννν

〉
L2(E)

.

After this preparation we formulate

Theorem 4 (residual based error estimator, 2008) Let (u,m, p) be the exact solution of (SPPbd,ε) and (uh,mh, ph)

be the computed solution of (SPPh,σ
bd,ε). Then there holds

‖∇(u−uh)‖
2
L2(Ω̂)

+‖(m−mh) · z‖2
L2(Ω) +‖∇(p− ph)‖

2
L2(Ω̂)

� ‖∇(uh + ph)‖
2
L2(Ω̂)

+‖m̃h‖
2
L2(Ω̂)

+‖m̃h‖L1(Ω̂)
+‖ελhmh‖

2
L2(Ω) + ∑

E⊂Ω̂

hE ‖[(∇uh −mh) ·ν]‖2
L2(E) (31)

+ ∑
E⊂Ω̂

hE ‖[∇(uh + ph) ·ν]‖2
L2(E) + 〈ε|λhmh|, | f − fΠ + ∇(uh + ph)+ m̃h|〉L2(Ω̂)

+ 〈 f − fΠ,m−mΠ〉L2(Ω) .

Proof: see [1] �

Adaptive Algorithm. We use a common adaptive mesh-refining algorithm of the type

solve → estimate → mark → refine

For error estimation, we use the reliable (upper) error bound from Theorem 4, which is written in the form

η2 = ∑
K∈T̂

η2
K

with local refinement indicators

η2
K := ‖∇(uh + ph)‖

2
L2(K) +‖m̃h‖

2
L2(K) +‖m̃h‖L1(K) +‖ελhmh‖

2
L2(K)

+ ∑
E⊂K

hE ‖[(∇uh −mh) ·ν]‖2
L2(E) + ∑

E⊂K
hE ‖[∇(uh + ph) ·ν]‖2

L2(E)

+ 〈ε|λhmh|, | f − fΠ + ∇(uh + ph)+ m̃h|〉L2(K) + 〈 f − fΠ,m−mΠ〉L2(K) .

For element marking, we use the strategy proposed by Dörfler, c.f. [6]. For given θ ∈ (0,1], we seek the minimal
subset M ⊂ T̂ such that

θ ∑
K∈T̂

η2
K ≤ ∑

K∈M

η2
K ,

where we use θ = 0.25 in the numerical experiment below.

Numerical experiment 2. In the second numerical experiment we choose a constant exterior field f = [0.5,0.5].
We choose the easy axis e, the magnetic rod Ω, and the surrounding area Ω̂ as in the first numerical experiment.
Again we refer to [3].

In our numerical computation, we observe a strong mesh-refinement in Ω̂\Ω towards the four corners of Ω. This is
probably due to the corner singularities of u and p with respect to the exterior domain induced by the four re-entrant
corners, see left-hand-side of Fig 3. Moreover, we observe some mesh-refinement of Ω at the left lower and right
upper corner of Ω. Although the exact solution in this experiment is unknown, this may indicate some singular
behavior of m, c.f. right-hand-side Fig 3. Altogether, the proposed adaptive algorithm seems to recover the optimal
order of convergence O(h) at least for ‖(m−mh) · z‖L2(Ω) , which is not observed for uniform mesh-refinement,
see Fig 4.
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Figure 3: adaptively generated mesh for Ω̂ and Ω
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Figure 4: Error in m (left), ∇u and ∇p (right), where w ≡ p
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