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Abstract.
Numerical simulations of the behavior of machine tools are usually based on a finite element (FE)
discretization of their mechanical structure. In order to capture all necessary details FE models are in
general very large and sparse. Hence the computation of the simulation takes an unacceptable long time
and requires much memory space. To calculate the results in reasonable time typically modal reduction
is used to obtain a model of lower order. This method has the disadvantage that the reduced system
only contains information of the modes chosen to generate the reduced system. Moreover, the choice
of the essential modes is usually based on a heuristic and cannot be fully automated. Therefore, there
is a need for alternate reduction methods which can be fully automated.
In the last years new methods to reduce large and sparse dynamical systems were presented. The two
most important ones are balanced truncation approximations (BTA) and Krylov subspace methods.
Here the main focus is on the reduction of the special FE systems with Krylov subspace methods. The
main goal of this work is to discuss whether these methods are suitable for this type of application, not
on the derivation of a new reduction technique. Several Krylov subspace methods for first or second
order systems based on the Interpolation-Rational-Krylov-Algorithm (IRKA) were implemented. The
reduced systems are compared with reduced systems obtained by modal reduction and BTA.

1 Introduction
The simulation of a machine tool is based on two major parts: a structural model of the machine tool representing
its behavior and reaction on certain control inputs and the control loop generating those inputs. Figure 1 shows the
entire set up of the simulation for the example of a control loop to control the torque of an axis motor.

Figure 1: Control loop and embedded mechanical structure.

To describe the behavior and the reaction of the mechanical structure on control inputs a system of FE semi-
discritized partial differential equations (PDE) is used.
After linearization one obtains a system of ordinary differential equations (ODE) of second order:

Mẍ(t)+ Dẋ(t)+ Kx(t) = Bu(t)
y(t) = CT

v ẋ(t)+CT
p x(t)

(1)

where M,D,K ∈ Rn×n, B ∈Rn×p, CT
v ,CT

p ∈Rm×n, x(t)∈ Rn, u(t)∈ Rp, y(t)∈ Rm×p. In the special case discussed
here the damping matrix D is chosen as

D = α ·M + β ·K,

that is, D is proportional to the mass matrix M and the stiffness matrix K, where α and β are real parameters which
are chosen by the experience of the design engineer and lie between 0 and 0.1. This kind of proportional damping
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is called Rayleigh damping. The system matrices are sparse, of high order and non-symmetric. Further the system
may be unstable. All of this accounts for unacceptable computational and resource demands in simulation and
control of these models. In order to reduce these demands to acceptable computational times, usually model order
reduction techniques are employed which generate a reduced order model that captures the essential dynamics of
the system and preserves its important properties.
Model order methods are methods to find a second order system of reduced dimension k � n

M̂ ¨̂x(t)+ D̂ ˙̂x(t)+ K̂x̂(t) = B̂u(t)
ŷ(t) = ĈT

v ˙̂x(t)+ ĈT
p x̂(t),

(2)

where M̂,D̂, K̂ ∈ Rk×k, B̂ ∈ Rk×p, ĈT
v ,ĈT

p ∈ Rm×k, x̂(t) ∈ Rk, u(t) ∈ Rp, ŷ(t) ∈ Rm×p, which approximates the
original system in some sense.
Moreover, as any second order model can be transformed into a first order system called state space form[

I 0
0 M

]
︸ ︷︷ ︸

E

[
ẋ(t)
ẍ(t)

]
︸ ︷︷ ︸

ż(t)

=

[
0 I

−K −D

]
︸ ︷︷ ︸

A

[
x(t)
ẋ(t)

]
︸ ︷︷ ︸

z(t)

+

[
0
B

]
︸︷︷︸

G

u(t),

y(t) =
[
CT

p CT
v
]︸ ︷︷ ︸

CT

[
x(t)
ẋ(t)

]
︸ ︷︷ ︸

z(t)

,

(3)

where E,A ∈ R2n×2n, G ∈ R2n×p, CT ∈ Rm×2n, z(t) ∈ R2n, u(t) ∈ Rp, y(t) ∈ Rm×p, and I ∈ Rn×n is the identity
matrix. By the transformation process the dimension of the system doubles. The corresponding reduced order
system is of the form

Ê ˙̂z(t) = Âẑ(t)+ Ĝu(t)
ŷ(t) = ĈT ẑ(t),

(4)

where Ê, Â ∈ Rk×k, Ĝ ∈ Rk×p, ĈT ∈ Rm×k, ẑ(t) ∈ Rk, u(t) ∈ Rp, ŷ(t) ∈ Rm×p.
In engineering the modal reduction [2] is most common. In the last years new reduction methods to reduce large and
sparse dynamical systems were presented. The two most famous methods are balanced truncation approximations
(BTA) and Krylov subspace methods. The efficient application of BTA to the specific problem considered here is
discussed by Benner and Saak in another contribution.

Here we consider the reduction of large structural mechanical FE models by Krylov subspace methods.

2 Krylov subspace methods
A Krylov subspace is defined by

Kr(P,q) = span{q,Pq,P2q, · · · ,Pr−1q} (5)

where P ∈ Rn×n and q ∈ Rn. q is called the starting vector.
the reduced first order systems. For our purposes, a Krylov subspace method generates a Petrov-Galerkin projection
Π which can be used to project the system (1) (resp., (3)) onto a system (2) (resp., (4)) of dimension k � n. For
that Krylov subspace methods generate matrices V ∈ R2n×k and W ∈ R2n×k with W TV = Ik such that the reduced
first order system (4) is constructed by applying the Petrov-Galerkin projection Π = VW T to (3) such that

Ê = W T EV, Â = W T AV, Ĝ = W T G, and ĈT = CTV. (6)

Similarly, the reduced second order system (2) is constructed by applying a Petrov-Galerkin projection to (1) such
that

M̂ = W T MV, D̂ = W T DV, K̂ = W T KV, B̂ = W T B, ĈT
p = CT

p V, and ĈT
v = CT

v V, (7)

where V ∈ Rn×k and W ∈ Rn×k with W TV = Ik.
In both cases, the columns of V and W span certain Krylov subspaces. As the vectors in the Krylov sequence
q,Pq,P2q, . . . tend to become almost numerically linearly dependent even for a moderate dimension of P, the
columns of V and W are chosen such that they represent a (numerically) better basis of the corresponding Krylov
subspace (e.g., they result from orthogonalizing a Krylov sequence or from bi-orthogonalizing two Krylov se-
quences). Usually, this is achieved by employing the Lanczos- or the Arnoldi algorithm, see Section 3 for more
details.

A block Krylov subspace is defined by

Kr(P,Q) = span{Q,PQ,P2Q, · · · ,Pr−1Q} = span{v0,v1, . . . ,vr−1}, (8)
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where P ∈ Rn×n and the columns of Q ∈ Rn×� are the linearly independent. Such a block Krylov subspace with
� starting vectors (assembled in Q) can be considered as a union of � Krylov subspaces defined for each starting
vector. For more details on Krylov subspace methods see, e.g., [12].

2.1 First order systems

The transfer function of a first order system (3) is the linear mapping of the Laplace transformation of the input to
the output

H(s) = CT (sE −A)−1G.

After expansion in a Laurent expansion series around an expansion point s0 one obtains the moments h j(s0), j =
0, ..,∞ of the transfer function

H(s) =
∞

∑
j=0

h j(s0)(s− s0)
j

where h j(s0) = CT [(A− s0E)−1E] j(A− s0E)−1G.

Consider the block Krylov subspace (8) for

P = (A− s0E)−1E and Q = (A− s0E)−1G. (9)

Assume that a (block) orthogonal basis for this block Krylov subspace is generated using a suitable method. Choose
the column vectors of V = W as the first k vectors of that basis and apply the congruence transformation (6) (with
V , W = V and V TV = I). Then the transfer function of the resulting reduced system matches at least the first k/p�
moments of the transfer function of the original system [1]. That is, at least the first k/p� moments ĥ j(s0), of the
transfer function Ĥ(s) of the reduced system (3) equal the first moments h j(s0), of the transfer function H(s) of
the original system (4) at the expansion point s0

h j(s0) = ĥ j(s0), j = 0,1, · · · ,k/p�− 1.

When V is determined from the block Krylov subspace generated by

P = (A− s0E)−1E and Q = (A− s0E)−1G,

while W is determined from the block Krylov subspace generated by

P = (A− s0E)−T ET and Q = (A− s0E)−TC,

such that W TV = I, then the transfer function of the system obtained by applying the congruence transformation
(6) with V and W matches at least the first k/p + k/m� moments of the transfer function of the original system
[1].

An alternative is to use more than one expansion point, these methods are called Multi-Point-Rational-Interpolation
methods [5]. Assume that î expansion points si, i = 1,2, · · · , î are to be considered. As before, at least ki/p�
moments are to be matched per expansion point si. Let ki ∈ N such that ∑î

i=1 ki = k. Now, these methods require
that at least the first ki/p� moments ĥ j(si) of the transfer function Ĥ(s) of the reduced system equal the first
moments h j(si) of the transfer function of the original system H(s) at the expansion points si, i = 1,2, · · · , î:

h j(si) = ĥ j(si), j = 0,1, · · · ,ki/p�− 1; i = 1,2, · · · , î

The column vectors of the matrix V are determined from the î block Krylov subspaces generated by

P = (A− siE)−1E and Q = (A− siE)−1G, i = 1,2, . . . , î.

From each of these subspaces, ki column vectors are used to generate V .
Similarly, the column vectors of matrix W are determined from the î block Krylov subspaces generated by

P = (A− siE)−T ET and Q = (A− siE)−TC.

In [6] the choice of expansion points si, i = 1, . . . , î is discussed. Starting from an initial set of expansion points si a
reduced order system is determined. Then a new set of expansion points are assigned by si =−λi, i = 1, . . . , î where
λi are the eigenvalues of the matrix pencil Ê −λ Â with Ê, Â as in (4) ordered such that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.
With this new set of expansion points, typically a reduction with better approximation abilities is obtained.
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2.2 Second order systems

The bottleneck of the computation of reduced systems by Krylov subspace methods is to solve linar systems of
the form (9). By the transformation of a second order system into a first order system the dimension of the system
doubles. Therefore the reduction of the second order system may be more effective if the dimension of the original
model is very large. The transfer function of a second order system is given by the Laplace transformation of (1):

H(s) = (Cp + sCv)
T (s2M + sD + K)−1B.

After expansion in a Laurent expansion series around an expansion point s0 one obtains the moments h j(s0), j =
0, ..,∞ of the transfer function

H(s) =
∞

∑
j=0

h j(s0)(s− s0)
j

where h j(s0) = (C̃p + s0Cv)
T [(−s2

0M− s0D̃− K̃)−1M] j(−s2
0M− s0D̃− K̃)−1B,

with D̃ = 2s0M + D, K̃ = s2
0M + s0D + K and C̃p = (Cp + s0Cv). Here we consider the special case of systems

with Rayleigh damping. In [7] it is shown, that using

P = −(s2
0M + s0D+ K)−1M and Q = −(s2

0M + s0D+ K)−1B

in (8) to generate k column vectors for matrix V the transfer function of the system reduced by applying the
congruence transformation (7) with V , W = V and V TV = Ik matches at least the first k/p� moments of the
transfer function of the original system [7].
In case V �= W , but W TV = I is chosen, W is determined from the block Krylov subspace generated by

P = −(s2
0M + s0D+ K)−T MT and Q = −(s2

0M + s0D+ K)−T (Cp + s0Cv).

The transfer function of the system obtained by applying the congruence transformation (7) with V and W matches
at least the first k/p + k/m� moments of the transfer function of the original system [7].
When more than one expansion point is used the column vectors of matrix V are determined from the block Krylov
subspaces

P = −(s2
i M + siD+ K)−1M and Q = −(s2

i M + siD+ K)−1B,

while the column vectors of matrix W are determined from the block Krylov subspaces

P = −(s2
i M + siD+ K)−T MT and Q = −(s2

i M + siD+ K)−T (Cp + siCv).

3 Implementation
To reduce first and second order systems methods based on the Interpolation-Rational-Krylov-Algorithm (IRKA)
[6] were implemented.

3.1 First order systems

To reduce the state space systems the following Krylov subspace methods were used:

1. Padé-via-Arnoldi method (PVA) by Odabasioglu and Celik [10].
2. Padé-via-Lanczos method (PVL) by Feldmann and Freund [8].
3. Rational-Arnoldi method (RA) by Grimme [5].
4. Rational-Lanczos method (RL) by Gallivan, Grimme and Dooren [9].

The first two methods use only one expansion point, while the last two methods deal with more than one expansion
point. In the following algorithms pseudo code of the implemented methods are given.

• The code of methods with one expansion point is given as Algorithm 1.
• The code of the Arnoldi algorithm is given as Algorithm 2.
• The code of the Lanczos algorithm is given as Algorithm 3.
• The code for the methods with more than one expansion point is given as Algorithm 4.

The methods are implemented to handle the sparse structure of the system matrices. To handle systems with one
input but more than one output the block forms of the Krylov-methods were implemented.
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Algorithm 1 Padé-via-Arnoldi method / Padé-via-Lanczos method
Input: system matrices E,A,G,C; expansion point s; reduced order r;

deflation tolerance defltol
Output: reduced system matrices Ê,Â,Ĝ,Ĉ

1: function [Ê,Â,Ĝ,Ĉ] = PvA(E,A,G,C,s,r,defltol)
[ [Ê,Â,Ĝ,Ĉ] = PvL(E,A,G,C,s,r,defltol) ]

2: V = [ ],W = [ ]
3: [L,U] = lu(A− sE)
4: for i = 1 to r do
5: V = Krylov(L,U,E,G,V,(W),defltol, i)
6: W = Krylov(UT ,LT ,ET ,CT ,(W),V,defltol, i)
7: end for
8: if #columns(V) �= #columns(W) then
9: make V and W of the same dimension

10: end if
11: [Ê,Â,Ĝ,Ĉ] = transform(E,A,G,C,V,W)
12: if the reduced system is unstable reduce dimension of V and W until the system is stable.

Some remarks on Algorithm 1:
In line 3 the LU decomposition of the matrix (A− sE) is computed.
In line 5 and 6 the matrices V and W are computed by the Arnoldi or the Lanczos algorithm. When the Arnoldi
algorithm is used the matrices V and W are orthonormal, i.e. VT V = I and WT W = I. When the Lanczos
Algorithm is used the matrices V and W are biorthonormal, i.e. WT V = Δ, where Δ is a diagonal matrix.
In line 9 the dimensions of V and W were adapted: The dimensions of the matrices may be not equal. The cause
are deflated vectors or an unequal number of input and output vectors (p �= m). There are two possibilities to adapt
the dimension of V and W: either reduce the number of columns of the matrix with higher dimension by truncating
the last columns, or use the Krylov algorithm to generate additional columns for the matrix at lower dimension.
In line 11 the congruence transformation (6) is computed.
In line 12 the dimension of the matrices V and W is decreased by truncating the last columns, until the reduced
system is stable.

Algorithm 2 Block Arnoldi method
Input: matrices L,U,E,G,V,W; deflation tolerance defltol; index i
Output: transformation matrix V

1: function [V] = Block_Arnoldi(L,U,E,G,V,defltol,i)
2: if (i == 1) then
3: R = U\L\G
4: else
5: r = #columns(V)
6: s = r−#columns(G)+ 1
7: Ṽ = [V∗s, · · · ,V∗r]
8: R = U\L\(E · Ṽ)
9: end if

10: for j = 1 to #columns(R) do
11: for k = 1 to #columns(Ṽ) do
12: h = (R∗ j,Ṽ∗k)2
13: R∗ j = R∗ j −h · Ṽ∗k
14: end for
15: h =

√
(R∗ j,R∗ j)2

16: if (h > defltol) then
17: V̂ = 1

h R∗ j
18: V = [V V̂]
19: else
20: Deflation
21: end if
22: end for

1270

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



Algorithm 3 Block Lanczos method
Input: matrices L,U,E,G,V,W; deflation tolerance defltol; index i
Output: transformation matrix V

1: function [V] = Block_Lanczos(L,U,E,G,V,W,defltol,i)
2: if (i == 1) then
3: R = U\L\G
4: else
5: r = #columns(V)
6: s = r−#columns(G)+ 1
7: Ṽ = [V∗s, · · · ,V∗r]
8: R = U\L\(E · Ṽ)
9: end if

10: if i �= 1 then
11: for j = 1 to #columns(R) do
12: for k = (#columns(Ṽ)−2) to #columns(Ṽ) do
13: h = (R∗ j,W∗k)2
14: R∗ j = R∗ j −h · Ṽ∗k
15: end for
16: h =

√
(R∗ j,W∗ j)2

17: if (h > defltol) then
18: V̂ = 1

h R∗ j
19: V = [V V̂]
20: else
21: Deflation
22: end if
23: end for
24: end if

Some remarks on Algorithm 2 and 3:
In line 3 the solution of (A− sE)x = G is computed via forward and backward substitution using the LU decom-
position of the matrix (A− sE).
In line 5 and 6 the vectors to generate the block matrix are detected and in line 7 the block matrix is generated.
In line 8 the solution of (A− sE)x = (E · Ṽ) is computed via forward and backward substitution with the LU
decomposition of the matrix (A− sE).
In line 20 respective 21 vectors R∗ j with h < defltol are deflated, they are not used to generate the matrix V.

Algorithm 4 Rational-Arnoldi method / Rational-Lanczos method
Input: system matrices E,A,G,C; expansion points: sk, k = 1, . . . ,K; tolerance tol ; vector with number of

expansions J for every sk; deflation tolerance defltol
Output: reduced system matrices Ê,Â,Ĝ,Ĉ

1: function [Ê,Â,Ĝ,Ĉ] = RA(E,A,G,C,s,J,defltol)
[ [Ê,Â,Ĝ,Ĉ] = RL(E,A,G,C,s,J,defltol) ]

2: while relative change in one sk > tol do
3: V = [ ],W = [ ]
4: for k = 1 to K do
5: [L,U] = lu(A− skE)
6: for i = 1 to J[k] do
7: V = Krylov(L,U,E,G, ,V,(W),defltol, i)
8: W = Krylov(UT ,LT ,ET ,CT ,W,(V),defltol, i)
9: end for

10: if ( #columns(V) �= #columns(W)) then
11: make V and W of the same dimension
12: end if
13: end for
14: Er = WT EV, Ar = WT AV
15: assign sk ←−λk(Er,Ar) for k = 1, . . . ,K
16: end while
17: [Ê,Â,Ĝ,Ĉ] = transform(E,A,G,C,V,W)
18: if the reduced system is unstable reduce dimension of V and W
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Some remarks on Algorithm 4:
sk, k = 1, . . . ,K are the expansion points. J is a column vectors with the number of expansions computed at expan-
sion point sk.
In line 5 the LU decomposition of the matrix (A− skE) is computed.
In line 7 and 8 the matrices V and W are computed by the Arnoldi or the Lanczos algorithm. When the Arnoldi
algorithm is used the matrices V and W are orthonormal, i.e. VT V = I and WT W = I. When the Lanczos algo-
rithm is used the matrices V and W are biorthonormal, i.e. WT V = Δ, where Δ is a diagonal matrix.
In line 11 the dimensions of V and W were made equal, see remarks on Algorithm 1 for details.
In line 14 the congruence transformation (6) for E and A is computed.
In line 15 new expansion points sk are chosen from the eigenvalues of (Er,Ar) in a relevant frequency interval
computed by a generalized eigenproblem.
In line 17 the congruence transformation (6) is computed.
In step 18 the dimension of the matrices V and W is reduced by truncating the last columns, until the reduced
system is stable.

3.2 Second order systems

To reduce the second order system the following Krylov subspace methods were used:

1. Rational Arnoldi for systems without damping matrix (RA_2o) [5]
2. Rational Lanczos for systems without damping matrix (RL_2o) [9]
3. Rational Arnoldi for systems with proportional damping (RA_PD) by Gugercin [7]
4. Rational Lanczos for systems with proportional damping (RL_PD)

The methods have more than one expansion point. The first two methods are modified versions of the Rational-
Arnoldi and the Rational-Lanczos method for second order systems without damping matrix. The last two methods
exploit the special structure of the proportional damping matrix. The pseudo code for the first two methods is given
as Algorithm 5 and for the last two methods as Algorithm 6.

Algorithm 5 Rational-Arnoldi method / Rational-Lanczos method for second order systems
Input: system matrices M,K,B,Cp,Cv; expansion points: sk, k = 1, . . . ,K; tolerance tol ; vector with number of

expansions J for every sk; deflation tolerance defltol
Output: reduced system matrices M̂,K̂, B̂,Ĉp,Ĉv

1: function [M̂,K̂, B̂,Ĉp,Ĉv] = RA_2o(M,K,B,Cp,Cs,J,defltol)
[ [M̂,K̂, B̂,Ĉp,Ĉv] = RL_2o(M,K,B,Cp,Cs,J,defltol) ]

2: while relative change in one sk > tol do
3: V = [ ],W = [ ]
4: for k = 1 to K do
5: [L,U] = lu(−s2

kM−K )
6: C = Cp + skCv
7: for i = 1 to J[k] do
8: V = Krylov(L,U,M,B, ,V,(W),defltol, i)
9: W = Krylov(UT ,LT ,MT ,CT ,W,(V),defltol, i)

10: end for
11: if ( #columns(V) �= #columns(W)) then
12: make V and W of the same dimension
13: end if
14: end for
15: Mr = WT MV, Kr = WT KV
16: assign sk ←−λk(Mr,Kr) for k = 1, . . . ,K
17: end while
18: [M̂,K̂, B̂,Ĉp,Ĉv] = transform(M,K,B,Cp,Cv,V,W)
19: if the reduced system is unstable reduce dimension of V and W

Some remarks on Algorithm 5:
sk, k = 1, . . . ,K are the expansion points. J is a column vectors with the number of expansions computed at expan-
sion point sk.
In line 5 the LU decomposition of the matrix −(s2

kM+ K) is computed.
In line 8 and 9 the matrices V and W are computed by the Arnoldi or the Lanczos algorithm. When the Arnoldi
algorithm is used the matrices V and W are orthonormal, i.e. VT V = I and WT W = I. When the Lanczos algo-
rithm is used the matrices V and W are biorthonormal, i.e. WT V = Δ, where Δ is a diagonal matrix.
In line 12 the dimensions of V and W were made equal, see remarks on Algorithm 1 for details.
In line 15 the congruence transformation (7) for M and K is computed.
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In line 16 new expansion points sk are chosen from the eigenvalues of (Mr,Kr) in a relevant frequency interval
computed by a generalized eigenproblem.
In line 18 the congruence transformation (7) is computed.
In step 19 the dimension of the matrices V and W is reduced by truncating the last columns, until the reduced
system is stable.

Algorithm 6 Rational-Arnoldi method / Rational-Lanczos method for second order systems with proportional
damping
Input: system matrices M,D,K,B,Cp,Cv; expansion points: sk, k = 1, . . . ,K; tolerance tol ; vector with numbers

of expansions J for every sk; deflation tolerance defltol
Output: reduced system matrices of second order M̂,D̂,K̂, B̂,Ĉp,Ĉv

1: function [M̂,D̂,K̂, B̂,Ĉp,Ĉv] = RA_PD(M,D,K,B,Cp,Cv,s,J,r,defltol)
[ [M̂,D̂,K̂, B̂,Ĉp,Ĉv] = RL_PD(M,D,K,B,Cp,Cv,s,J,r,defltol) ]

2: while relative change in one sk > tol do
3: V = [ ],W = [ ]
4: for k = 1 to K do
5: [L,U] = −lu(s2

kM+ skD+ K)
6: for i = 1 to J[k] do
7: C = Cp + skCv
8: V = Krylov(L,U,M,B,V,(W),defltol, i)
9: W = Krylov(UT ,LT ,MT ,CT ,W,(V),defltol, i)

10: end for
11: if ( #columns(V) �= #columns(W)) then
12: make V and W of the same dimension
13: end if
14: end for
15: Mr = WT MV, Dr = WT DV, Kr = WT KV
16: assign sk ←−λk(Mr,Dr,Kr) for k = 1, . . . ,K
17: end while
18: [M̂,D̂,K̂, B̂,Ĉp,Ĉv]= transform(M,D,K,B,Cp,Cv,V,W)
19: if the reduced system is unstable reduce dimension of V and W

Some remarks on Algorithm 6:
sk, k = 1, . . . ,K are the expansion points. J is a column vector with the number of expansions computed at expan-
sion point sk.
In line 5 the LU decomposition of the matrix −(s2

kM+ skD+ K) is computed.
In line 8 and 9 the matrices V and W are computed successively by the Arnoldi or the Lanczos algorithm. When
the Arnoldi algorithm is used the matrices V and W are orthonormal, i.e. VT V = I and WT W = I. When the
Lanczos algorithm is used the matrices V and W are biorthonormal, i.e. WT V = Δ, where Δ is a diagonal matrix.
In line 12 the dimensions of V and W were made equal, see remarks on Algorithm 1 for details.
In line 15 the congruence transformation (7) for M, D and K is computed.
In line 16 new expansion points sk are chosen from the eigenvalues of (Mr,Dr,Kr) in a relevant frequency interval
computed by a generalized eigenproblem.
In step 19 the dimension of the matrices V and W is reduced by truncating the last columns, until the reduced
system is stable.

4 Numerical Results
To test the approximation results of the different methods a single feed drive with ball screw drive and linear guide
was designed using the CAD environment NASTRAN©. The structure of that part of the machine tool is shown in
Figure 2. The structure is embedded in a control loop. As input the torque at the motor spindle was defined. The
angle and the velocity of the motor spindle and the position and the velocity of the slide were defined as outputs.
The test model is of order n = 738, i.e. it has 738 degrees of freedom (DOF’s), it has one input (p = 1) and four

outputs (m = 4). The parameters for the proportional damping matrix were chosen as α = 0.02 and β = α/100.
The algorithms were implemented in MATLAB1 version 7.1 (R14). The computations were performed on a AMD
Athlon(tm) 64 X2 Dual Core Processor 4400+ and 2 GB RAM.
All results reported here were obtained for first order systems of initial reduced dimension 20 and for second order
systems of initial reduced dimension 10. Besides the Krylov subspace methods, a second order modal reduced
system generated by NASTRAN of dimension 10 (modal_2o) and a first order BTA reduced model of dimension
20 (BTA) were used to compare the approximation results of various reduction methods. The BTA reduced model
was generated by Benner and Saak (see their contribution) using an efficient application of BTA [3] to the specific

1MATLAB is a trademark of The MathWorks, Inc.
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Figure 2: FE structure of the machine part: top: geometry of the test model, bottom: without the geometry.

problem considered here. The method is applied to a second order system resulting in a first order reduced one
(unlike the other second order methods).
In Table 1 the input parameters and the computation times to reduce the first order system using different Krylov
subspace methods are given. Table 2 gives the same information as Table 1, but for the corresponding second order
system. In order to compare the different methods the approximation of the original transfer function and the time

expansion expansions tolerance time to
points per point tol reduce the
s0 or si k or ki system [s]

PVA 0 20 10−5 12.2
PVL 0 20 10−5 11.3
RA 2π(0,±125i,±250i)T 2 10−5 20.1
RL 2π(0,±125i,±250i)T 2 10−5 19.6

Table 1: Chosen initial expansion points, expansions per point, tolerance tol and computation time to reduce the first
order systems.

expansion expansions tolerance time to
points per point tol reduce the

si ki system [s]
RA 2π(0,±125i,±250i)T 1 10−5 8.8
RL 2π(0,±125i,±250i)T 1 10−5 8.6

RA_PD 2π(0,±125i,±250i)T 1 10−5 8.1
RL_PD 2π(0,±125i,±250i)T 1 10−5 7.9

Table 2: Chosen initial expansion points, expansion per point, tolerance tol and computation time to reduce the second
order systems.

response by the reduced systems were analyzed.
To assess the quality of the reduced systems the following errors were used:

• The absolute time response error from the input to the j-th output of a reduced system was computed by

εt,abs(t) = |y j(t)− ŷ j(t)|.

Here εt,abs(t) is the absolute error, y j(t) is the j-th output of the original system and ŷ j(t) is the j-th output
of the reduced system at time t.

• The relative error of the transfer function from the j-th input to the k-th output of a reduced system was
computed by

εω,rel(ω) =
|Hk, j(2π ω i)− Ĥk, j(2π ω i)|

|Hk, j(2π ω i)|
.

Here εω,rel(ω) is the relative error, Hk, j and Ĥk, j are the transfer functions from the j-th input to the k-th
output of the original system respective of the reduced system.
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The worst approximation results were observed for the input-output behavior from the input to the second output.
Only this information is given in the following figures.

4.1 Approximation of the transfer function

In Figure 3 the transfer functions of the original and the reduced systems are given, while in Figure 4 the relative
approximation errors of the transfer functions are given. Here the relevant frequency interval is from from 0 to
1000 Hz because this frequency range is most important to simulate the behavior of mechanical structures under
consideration. In order to compare the different methods for first order systems the second order modal reduced
system (modal_2o) was transformed into a first order system of dimension 20 (modal_1o).
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Figure 3: The second output transfer function of the original and the reduced systems: left: Transfer functions of the
original first order system and the reduced systems obtained with methods to reduce first order systems. right: Transfer
functions of the original second order system and the reduced systems obtained with methods to reduce second order
systems.
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Figure 4: Relative error εω ,rel(ω) of the reduced systems: left: Approximation errors of the reduced systems obtained
with methods to reduce first order systems. right: Approximation errors of the reduced systems obtained with methods
to reduce second order systems.

The results for the first order system is displayed on the left in each of the two figures. The approximation results
obtained with the PVA and the PVL method get worse for frequencies far away from the expansion point 0. The
maximum relative error of these methods is greater than 1. The Krylov subspace methods Rational-Arnoldi and
Rational-Lanczos yield reduced systems with an approximation error similar to that of the modal reduced systems
of order 20 (modal_20) with a maximum relative error of 10−2. The reduction with Rational Krylov methods
which use more than on expansion point yields better approximations in a wider range of frequencies.
The results for the second order system is displayed on the right in each of the two figures. All Krylov subspace
methods to reduce second order systems considered here are Rational Krylov methods, that is, they use more than
one expansion point. They yield good approximations in a wide range of frequencies. All four methods imple-
mented here have almost the same approximation errors.
For the entire frequency range considered here the reduced second order systems have a better relative error than
the reduced first order systems.
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4.2 Approximation of the time response

To analyze the approximation abilities of the response behavior in time the reduced models were embedded into
a control loop designed with MATLAB/SIMULINK. The input signal was an impulse from 0 to 1 in t = 0 s.
In Figure 5 the time response of the reduced systems embedded in the control loop are shown. To compute the
simulation in a reasonable time the time responses of the reduced systems were compared with the time response
of a modal reduced system of order 472 which includes all modes of the original system. MATLAB/SIMULINK
deals only with first order systems, so the second order reduced systems had to be transformed into first order
systems by (3).
In Figure 6 the absolute errors of the time responses after embedding the reduced systems into the control loop
are displayed. The Krylov subspace methods to reduce first order systems yield good approximations of the time
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Figure 5: Time responses of the reduced systems, here the input-output behavior from the input to the second output is
displayed: left: Time response of the modal reduced system with dimension 472 and the reduced systems obtained with
methods to reduce first order systems. right: Time response of the modal reduced system with dimension 472 and the
reduced systems obtained with methods to reduce second order systems.
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Figure 6: Absolute error εt,abs(t) of the reduced systems: left: Approximation errors of the reduced systems obtained
with methods to reduce first order systems. right: Approximation errors of the reduced systems obtained with methods
to reduce second order systems.

response. The maximal absolute error is 2 ·10−5 in contrast to 3 ·10−4 after modal reduction of the original system
to a system of order 20. The Krylov subspace methods to reduce second order systems yield better approximations
of the time response of the original system compared to the modal and via BTA reduced systems of order 20. The
maximal absolute error is 2 ·10−5 in contrast to 3 ·10−4 and 9 ·10−5 obtained with the modal resp. the BTA reduced
model of order 20.

5 Conclusions
Several Krylov methods to reduce first or second order systems were implemented. The reduction algorithms are
based on IRKA and were adapted for the special systems of FE models occurring in the simulation of machine
tools. For the problem at hand the methods with more than one expansion point should be used, because they
give better results at a wider range of frequencies. In time response we obtained similar approximation results
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whether by using reduction methods for first order systems or second order systems. For the entire frequency
range considered here the reduced systems obtained with second order methods have a better relative error than the
reduced systems obtained with first order methods. The second order form of a system is half as large as the first
order form because by the transformation process the dimension of the system doubles. Therefore the reduction of
the second order system may be more effective if the dimension of the original model is very large. So the methods
for reducing second order systems are to prefer for problems with very large system matrices.
Krylov subspace methods yield reduced models approximating the original transfer function and time response
quite well. Reduced systems obtained via Krylov subspace methods yield slightly better approximation results
than systems reduced with BTA.
Krylov subspace methods are suitable for the reduction of structural mechanical FE models obtained by CAD
environments like NASTRAN. With these methods reduced models are obtained in a very effective way which have
very similar approximation abilities like modal or BTA reduced models.
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