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Abstract. The efforts to reduce environmental emissions are nowadays affecting increasingly the
production of energy, and higher targets are set for the efficiency of combustion processes. There-
fore it is important to develop such data analysis and modeling methods that can respond to these
new demands. In this study, the formation of nitrogen oxides (NOx) in a circulating fluidized bed
(CFB) boiler was modeled by using a sub-model -based artificial neural network (ANN) approach.
In this approach, the process data are processed first by using a self-organizing map (SOM) and k-
means clustering to create subsets representing the separate process states in the boiler. These
process states can include for example start-ups, shutdowns, and idle times in addition to the nor-
mal process flow. After the determination of process states, a variable selection procedure based
on multilayer perceptrons (MLP) is performed to create sub-models and to determine whether dif-
ferent variables are affecting the NOx formation in the defined process states. The results show that
this kind of approach can be a fruitful way to get new information from combustion processes.

1 Introduction
Currently, the efficiency of energy plants is becoming a more important issue because of tightening environmen-
tal legislation and increasing fuel costs. One of the main issues in this respect is to minimize the process emis-
sions, which include harmful emission components such as nitrogen oxides (NOx). Despite the growing envi-
ronmental issues, the production must be capable of reacting fast to changes in the boiler load and to variations
in the fuel quality, which necessitates a faster and more accurate operational control of the process. Due to this,
such advanced and intelligent systems for process monitoring and optimization are needed that can respond to
these new dynamic demands.

Archived process data resources can be used for the optimization and improvement of productivity. At present,
artificial neural networks (ANN) are considered an advantageous way to model process data in a diverse field
[1–4]. Many of the past applications have also demonstrated that ANNs can provide an efficient automated me-
thod for modeling industrial data [1–4]. For example self-organizing maps (SOM) [4] have been successfully
used in many research fields [4–7]. The SOM method offers an efficient means of handling complex and multi-
dimensional data, which is a typical situation in any industrial application.  Multilayer perceptrons (MLP) have
likewise proved their efficacy in the modeling of industrial processes [2, 8–11]. In this study, we combine these
two ANN methods to model and analyze the circulating fluidized bed (CFB) boiler process.

 As we have disclosed earlier [6], different states of the fluidized bed combustion process can be extracted from
process data. These states can involve for instance start-ups, shut-downs, and idle times in addition to the normal
process flow. The behavior of the process may be extremely diverse between these conditions. For example, the
quantities of different emission components may vary greatly between the states for the simple reason that oil is
used most abundantly at start-ups, and less in normal process conditions. However, the normal process flow can
also include different process states, where e.g. the bed temperature is unstable or the steam flow is lower than
usual. It is important to learn to identify these states as well, because the behavior of the process can vary also in
a smaller scale but still in a way that affects the model accuracy.

Creating sub-models instead of generic models forms an interesting aspect of modern-day process analysis be-
cause process states and their sub-models may contain valuable information on the behavior of the process, as
our previous findings from the wave soldering and the activated sludge treatment process suggest [7, 12]. The
sub-model -based approach is reasonable for instance in cases where certain variables correlate strongly with
each other, whereby it seems evident that less perceivable but still important phenomena remain undetected
behind the characteristic behavior of the data. Despite their lesser perceptiveness, these phenomena can be im-
portant considering e.g. the combustion process and certain events in it. Fortunately, this kind of underlying
information can be revealed by identifying different process states and constructing sub-models as presented in
this paper.
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2 Process and data
The main parts of a typical circulating fluidized bed (CFB) boiler include a combustion chamber, a separator and
a return leg for the recirculation of the bed particles. Combustion occurs in a fluidized bed, which is typically a
mixture of sand, fuel ash and a matter for capturing the sulfur. The primary combustion air is brought in from the
bottom of the chamber to fluidize the bed material. Because CFB boilers require the use of high fluidizing veloc-
ities, the bed particles are constantly moving with the flue gases, proceeding through the main combustion
chamber into a separator, from which the larger particles are extracted and returned to the combustion chamber.
Meanwhile, the finer particles are removed from the flue gases by an electrostatic precipitator or by a bag-house
filter located downstream from the boiler’s convection section. The large heat capacity of the bed ensures stable
combustion, and supporting fuels such as oil or gas are used only during the start-up. The intense turbulence of
the circulating fluidized bed facilitates the mixing and combustion of fuel. The typical combustion temperature is
between 850 and 900 °C.  The raw data are extracted once a month from databases of utility scale CFB boilers
and the time resolution of the data set is typically 15 minutes. The size of the data matrix used as an example is
10 000 x 42 (10 000 rows, 42 variables in columns).

3 Methods

3.1 Self-organizing maps (SOM)
Kohonen’s self-organizing map [4] is a well-known unsupervised learning algorithm. One of the main applica-
tions of SOM is to facilitate data analysis by mapping n-dimensional input vectors to the neurons for example in
a two-dimensional lattice (map). On the map, the input vectors with common features arrive in the same or
neighboring neurons. This way the topological order of the original input data is preserved. The lattice of ar-
ranged neurons reflects variations in the statistics of the data set and chooses common features, which approx-
imate to the distribution of the data points. Each neuron includes an n-dimensional reference vector (prototype
vector), which describes the common properties of the neuron. The array of neurons (the map), can be illustrated
as a rectangular, hexagonal, or even irregular organization. The size of the map can be altered depending on the
application; the more neurons, the more details are represented.

The SOM analysis is based on unsupervised learning. At first, random values for the preliminary reference vec-
tors are sampled from an even distribution whose limits are defined by the input data. During learning the input
vectors are categorized one by one into particular neurons (best matching unit, BMU) based on the smallest n-
dimensional distance between the input vector and the reference vectors. The nearest neighbors of the activated
neuron are also activated according to a neighborhood function (e.g. Gaussian distribution) that is dependent on
the network topology. At the final stage, the reference vectors of all activated neurons are updated.

3.2 K-means
The k-means method is a widely-used non-hierarchical clustering algorithm [13]. The basic version of the algo-
rithm is started by randomly defining k cluster centers, and directing each data point to the cluster whose mean
value is closest in the Euclidean-distances-sense. At the next step, the mean vectors of the data points included to
each cluster are calculated and used as new centers in an iterative approach. The optimal number of clusters can
be determined e.g. by using the Davies-Bouldin -index [14]. Small values of DB-index correspond to clusters
whose centers are far from each other, so the optimal number of clusters is the number where the index reaches
its minimum. This eliminates the need for knowing the clusters a priori.

3.3 Multilayer perceptrons (MLP)
Multilayer perceptrons are well-known feed-forward neural networks [1–2], which consist of processing ele-
ments called neurons, and connections. The neurons are arranged in three or more layers: an input layer, one or
more hidden layers, and an output layer. A MLP network is trained with data samples, which leads to a super-
vised learning procedure. The network input signals are processed forward through successive layers of neurons
on a layer-by-layer basis. At the first phase, the input layer distributes the inputs to the first hidden layer. Next,
the hidden neurons summarize the inputs based on predefined weights, which either weaken or strengthen the
effect of each input. The weights are determined by learning from examples (i.e. data samples), which is called
supervised learning. Eventually, the inputs are processed by a transfer function, and the result is transferred as a
linear combination to the next layer, which is generally the output layer. The performance of the model is then
evaluated with an independent validation data set.

MLP neural networks must be trained to the problem concerned. A popular MLP training technique is the back-
propagation algorithm [15]. In back-propagation the output values are compared with the proper answer from the
original data to calculate the value for a predefined error function. Eventually the iterative training procedure
defines a set of weights which minimizes the error between the actual and expected outputs for all input patterns.
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3.4 Determination of process states
At the first stage, all the input values were variance scaled. Next, the raw data were coded into inputs for a self-
organizing network, and a SOM having 384 neurons in a 24x16 hexagonal arrangement was constructed by
using experimentally determined parameters. The linear initialization and batch training algorithm were used in
the training of the map, and the neighborhood function was Gaussian. The map was taught with 10 epochs, and
the initial neighborhood had the value of 6. The SOM Toolbox (http://www.cis.hut.fi/projects/somtoolbox/) was
used in the analysis under a Matlab (version 7.6) software (Mathworks Inc., Natick, MA, USA, 2008) platform.
The k-means algorithm was used to the clustering of the trained map or, more precisely, to the clustering of the
SOM reference vectors. The cluster information was then combined with process knowledge to identify the
process states indicated by clusters.

3.5 Construction of sub-models
To select variables within process states, a variable selection procedure was implemented by using a MLP net-
work with a back-propagation algorithm. The purpose of variable selection was to find the most important fac-
tors affecting the formation of NOx in different process states. The data was divided into three subsets, namely
training, training test and validation sets. The training data set, being 60 % of the total 1073 samples was used
for training the network. In addition, 20 % of the data set was put to the separate test set to be used in the back-
propagation error calculations. The validation data set (the remaining 20 % of the samples) was used as an inde-
pendent test set for testing the model. The artificial neural network consisted of the process parameters as inputs,
one hidden layer with 15 hidden neurons and the output neuron describing the predictable NOx-concentration.
The parameters of the neural network were decided experimentally. The hyperbolic tangent sigmoid (tansig)
transfer  function  was  used  for  the  hidden layer,  and the  linear  (purelin) transfer function for the output layer,
whereas the resilient back-propagation (trainrp) algorithm and the mean squared error function (mse) were ex-
ploited in the training procedure. Matlab (version 7.6) software with the Neural Network Toolbox (version 6.0)
was used in data processing.

3.6 Selection of variables
The variables were brought one by one to the input layer of the neural network, using the NOx concentration as
an output. To reduce the impact of statistical variation on the results, the training of the network was done in five
rounds, calculating the model goodness every round for each added variable. Within each round, the same data
set was used in the training of all the parallel models. However, the training data set was chosen differently in
every separate round, which reduces the impact of statistical contingency. After this, the mean model goodness
value and the standard deviation of all rounds were calculated to rank the variables. In other words, several pa-
rallel MLP models were created, from which the best was always selected to be developed in the next selection
round. The influence of each selected variable was then added to the total cumulative impact to get a visualiza-
tion of the evolving total effect. The presented variable selection procedure was performed first for the entire
process data, and then for each process state separately to reveal the possible increase of model goodness within
process states. Index of agreement [16] (IA), or Willmott’s index, was used as the model goodness measure.

In addition, the selection of variables was performed by using multiple linear regression (MLR) [17–18] to vali-
date the results. Except for the modeling method the selection procedure was essentially the same as in the MLP
method: the variables were selected by creating parallel models and always picking the best of them, keeping the
best model as a basis for the next selection round until all the variables were eventually selected.

4 Results and discussion
The self-organizing map was obtained by training a self-organizing network using the fluidized bed boiler data
as inputs. After clustering, the process states were determined by using process knowledge. The process states
are identified on the SOM in Fig. 1. The performances of the NOx simulation sub-models based on the corres-
ponding process states, and the first ten selected variables of those models can be seen in Table I. The goodness
of these sub-models varies from 0.97 to 0.98, as measured by the index of agreement (IA). In comparison with
the generic process model including all the process data (IA ca. 0.95), these values are 2–3 % greater. This sug-
gests that dividing the overall process model into separate process state models clearly improves the model
goodness.

Furthermore, there was a remarkable congruence between variables selected by the nonlinear MLP method and
the linear method (MLR). First of all, the first ten variables selected by both of these methods were essentially
the same within each process state; the remaining differences between the models can be explained by nonlinear-
ity. However, the overall goodness varied between 0.8–0.9 in the linear sub-models, so the value added by the
MLP method (IA ca. 0.97–0.98) is outstanding.

Generally speaking, there seems to be three kinds of process variables. Firstly, some of them seem to be domi-
nating variables, i.e.  they have a great impact on the NOx formation in every process state. These include, for
instance, the fluidized bed temperature and pressure. On the other hand, certain variables seem to affect the NOx
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formation only in certain process states. These variables seem to vary with each state of process, as can be seen
in Table I. Thirdly, in addition to the affecting variables there are also such variables that have no great impact
on the output variable in any of the process states.

Fig. 1. SOM with identified process states.

The schematic presentation of the method used is shown in Fig. 2. At first the raw data are pre-processed. Pre-
processing includes all the necessary actions, such as the rough selection and normalization of variables, to
process the data to a suitable form for modeling. Next, the SOM and k-means clustering are used and combined
with expert process knowledge to obtain and identify the different process states. Finally, the modeling is per-
formed within process states to get process sub-models.

The approach presented is useful because the main model may involve interesting phenomena that are hidden
behind the dominating behavior of the data. These hidden phenomena are not necessarily perceivable without
creating sub-models, but can still have significant effects on the process. For example in this case the accuracy of
the NOx simulations improved by creating process states and their sub-models. In this respect, the results con-
firmed our previous findings [7, 12] concerning the fact that process states may involve important information on
a process.

The method presented in this paper facilitates data analysis and can be used to define process states and to create
sub-models within those states. Especially, the method is advantageous when dealing with a large number of
process variables, because in such cases the different data processing stages can be laborious if more conven-
tional methods are used in the analysis. The classification of data samples into different categories, which can be
identified as process states by using expert knowledge, seems to provide extra accuracy to the models. In addi-
tion, the ability of the method to reveal nonlinear and multivariate interactions can bring additional value to the
models. For these reasons, the presented data analysis method offers a fruitful option to identify the different
process states and their corresponding sub-models.
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PROCESS STATE 1 PROCESS STATE 2
FLUIDIZED BED PRESS AVE 0,865 FLUIDIZED BED TEMP AVE 0,902
SA FLOW TO LEFTRIGHT4 AVE 0,881 SECONDARY AIR FLOW AVE 0,928
Coal conveyor speed AVE 0,891 FLUIDIZED BED PRESS AVE 0,947
FLUIDIZED BED TEMP AVE 0,946 FG O2 AFT ECO1TO4 AVE 0,961
FLUIDIZED BED TEMP STD 0,954 PRIMARY AIR FLOW AVE 0,970
FG O2 AFT ECO1TO4 AVE 0,956 FG O2 BEF STACK 0,974
FG TEMP AFT SEPTR STD 0,957 FURN LWR LVL TEMP STD 0,969
FURN LWR LVL TEMP STD 0,962 FURN MDL LVL TEMP AVE 0,975
PA FLOW TO WINDBOX AVE 0,962 FURN MDL LVL TEMP STD 0,973
FLUIDIZED BED PRESS STD 0,971 OIL RTN FLOW AVE 0,979

PROCESS STATE 3 PROCESS STATE 4
FLUIDIZED BED TEMP AVE 0,935 FLUIDIZED BED PRESS AVE 0,774
PRIMARY AIR FLOW STD 0,982 FLUIDIZED BED TEMP AVE 0,896
FG O2 AFT ECO1TO4 AVE 0,983 FG O2 AFT ECO1TO4 AVE 0,950
FURN MDL LVL TEMP STD 0,983 Coal conveyor speed AVE 0,970
FG TEMP AFT SEPTR STD 0,971 PRIMARY AIR FLOW AVE 0,971
OIL FLOW BEF BRN STD 0,979 PRIMARY AIR FLOW STD 0,972
SA FLOW TO LEFTRIGHT6 AVE 0,971 OIL RTN FLOW AVE 0,975
SA FLOW TO LEFTRIGHT4 AVE 0,966 SECONDARY AIR FLOW STD 0,975
SA FLOW TO LEFTRIGHT4 STD 0,972 PA FLOW TO FUEL FEED STD 0,978
PRIMARY AIR FLOW AVE 0,980 FURN LWR LVL TEMP STD 0,976

PROCESS STATE 5 Abbreviations:
FLUIDIZED BED TEMP AVE 0,921 BRN = burner AFT = after
PA FLOW TO WINDBOX AVE 0,942 ECO = economizer BEF = before
Coal conveyor speed AVE 0,952 FG = flue gas LVL = level
FLUIDIZED BED TEMP STD 0,962 FURN = furnace LWR = lower
FG O2 AFT ECO1TO4 STD 0,964 PA = primary air MDL = middle
SA FLOW TO S/U BNR STD 0,965 PRESS = pressure
FURN MDL LVL TEMP STD 0,968 SA = secondary air
OIL FLOW BEF BRN AVE 0,968 SEPTR = separator
FLUIDIZED BED PRESS AVE 0,970 TEMP = temperature
FURN LWR LVL TEMP STD 0,971

Table I. Process state -specific models obtained by MLP variable selection. The numbers indicate the development of the
model performance with each added variable as a means of the IA. For practical reasons only the ten first of the selected

variables are shown. 'AVE' refers to an averaged variable and 'STD' to standard deviation.

Fig. 2. Schematic presentation of the method used.
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5 Conclusion
Because of the growing need for optimizing industrial processes due to, for example, increasing environmental
issues, developing new methods for process analysis is important. The results presented in this paper show that
the artificial neural network method used is an efficient and fruitful way to model the circulating fluidized bed
process and to simulate the process emissions.
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