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Abstract. Elementary modes (EMs) represent a powerful means in the analysis of metabolic networks
and their characteristic properties. However, EM analysis cannot be applied to genome-scale systems
since their number is growing exponentially with network size. Thus, EMs can only be computed in
networks usually not corresponding to the entire known system and hence they might not reflect the
true metabolic capabilities of the entire system. Here we present a novel concept, elementary flux pat-
terns, which allows to circumvent these problems. Within a large or genome-scale metabolic network
elementary flux patterns are defined as sets of reactions that represent the basic routes of any steady-
state flux of the genome scale network through a particular subsystem. Equipped with this method we
analyze the EMs obtained for two networks within the central metabolism of Escherichia coli that have
been studied previously. We integrate these networks as subnetworks into a publicly available genome
scale metabolic model of E. coli. Thus, we find that 6 of the 16 elementary modes of the first system
cannot be present in any steady-state flux of the genome-scale system. For the second system, all EMs
are part of global steady-state fluxes. Furthermore we analyze the elementary flux patterns of the sub-
networks and find several alternative routes on which intermediates of the subnetworks can be produced
from species in the growth media. We conclude that the concept of elementary flux patterns offers two
major advantages. First, elementary flux patterns more faithfully reflect the possible steady-state fluxes
through a subsystem of a large metabolic network by taking into account the entire system. Second,
they enable the application of tools from EM analysis to genome-scale metabolic networks.

1 Introduction
Elementary modes (EM) have seen a wide array of applications in Systems biology and biotechnical engineer-
ing. They have been used to assess network robustness [15, 1], to find pathways with optimal yields for certain
metabolic species [8], to study enzyme deficiencies [11], to find possible targets for the engineering of metabolic
networks [6] and to analyze the effect of such an engineering [13]. Due to the growing number of publicly available
genome-scale metabolic networks [2, 3, 4] it becomes desirable to apply EM analysis to such systems.

The computation of EMs in larger metabolic networks meets with the principal problem that their number grows
exponentially with network size. Thus, owing to constraints in memory and computation time, they become
difficult to analyze [7] or even impossible to enumerate. In consequence, EM analysis has to be applied to smaller
networks containing reactions of interest and not the entire known system [9, 10, 12, 11]. The integration of the
model into the remaining system is achieved by the use of exchange fluxes, corresponding to the production or
consumption of a species by a large set of reactions of the remaining model, as well as external species. These
species are considered to be buffered by reactions of the complete system and hence they can be excluded from
the steady-state condition. Examples for such species are energy or redox currency species like ATP, FADH2 or
NADH.

The exclusion of these currency species from the steady-state condition is easily justified by the large number of
reactions in which they participate. However, due to the constraints in EM computation usually only a small part
of the known network is considerd and hence most of its species are implicitly defined as external. In consequence,
the subnetwork is considered almost independent from the remaining model. However, the topology of a network
can give rise to dependencies between the production and consumption of different external species. In such a case,
some EMs of the subnetwork need to be combined with other EMs to allow a global steady-state flux or might be
even not part of any steady-state flux.

Elementary flux patterns, a concept to be introduced in this work, circumvents this problem by explicitly consider-
ing the possible fluxes of the entire network, when analyzing the steady-state fluxes of a subnetwork. Elementary
flux patterns correspond to the basic routes of each steady state using reactions from a specific subnetwork. Owing
to their definition, they allow to apply concepts building on EMs to genome-scale metabolic networks without the
drawbacks encountered in EM analysis. Since, elementary flux patterns can be mapped to EMs on the genome
scale, it is even possible to analyze “genome-scale” EMs.
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This work is sectioned into three main parts. First we introduce the concepts central to this work in Section 2.
These concepts are applied to a genome-scale metabolic network of E. coli in Section 3. Finally, we conclude in
Section 4.

2 Central concepts
For a metabolic network consisting of n reactions among m metabolites or species the m×n stoichiometric matrix
M indicates the consumption and production of each species in each reaction. An entry Mi j is negative if species i
is consumed by reaction j and positive if it is produced by j.

2.1 Elementary modes

Elementary modes are defined as minimal reaction sets that can operate at steady state with all reactions obeying
the irreversibility constraint [12]. The term “minimal” refers to that there is no subset of reactions that could also
operate at steady state.

An EM is a flux vector v of length n which is a solution to the equation system

M ·v = 0 (1)

Furthermore, v has to obey thermodynamic constraints. That is, for a reaction considered to be irreversible, the
corresponding entry in v has to be non-negative. For simplicity we split reversible reactions into forward and back
directions and hence the irreversibility constraint becomes

v ≥ 0 (2)

Formally, the solution space of equations 1 and 2 can be visualized as a convex polyhedral cone in the n-dimensional
flux space. The spanning vectors or extreme rays of this cone correspond to the EMs, and hence every steady-state
flux can be written as a non-negative linear combination of EMs.

As mentioned above the analysis with EMs usually involves the introduction of external species. External species
are considered to be buffered by reactions outside of the model. Thus, the steady-state condition can be relaxed by
removing the corresponding rows from M. However, doing this, all information on their production and consump-
tion by reactions outside of the subsystem under consideration is lost.

2.2 Elementary flux patterns

Flux patterns are defined as sets of reaction indices in a subnetwork of a large metabolic model. For simplicity
we assume that the k first reactions of the system belong to the subnetwork. These reactions correspond to the k
first columns of the stoichiometric matrix M. Now, a flux pattern s is a set of indices i with 1 ≤ i ≤ k fulfilling the
following condition

∃v ∈ Rn : v ≥ 0 and M ·v = 0 and ∀i ∈ s : vi > 0 and ∀ j ∈ {1..k}\ s : v j = 0 (3)

Thus, a flux pattern can be understood as a set of reactions, or more precisely a set of reaction indices, of the
subnetwork that is part of a steady-state flux v of the entire network. We require that only the indices s of the
subsystem have a non-zero flux in v, while the remaining fluxes are constrained to zero.

Now elementary flux patterns can be defined as the building blocks of the set of flux patterns S of a subnetwork. A
flux pattern s is called elementary if

�s′1, ...,s′l ⊆ S\ s :
⋃

1≤i≤l
s′i = s (4)

Hence, s is called elementary if it cannot be written as set union of other flux patterns of a subnetwork. As outlined
in Section 2.3, this definition is less restrictive than this in the concept of EMs since one elementary flux pattern
can be subset of another.

It is important to mention that elementary flux patterns are applicable even if the subnetwork is not connected. The
subnetwork can consist of independent units of reactions, which do not interface to each other through common
substrates or products.

The computation of elementary flux patterns proceeds by iteratively solving a mixed-integer linear program (MILP).
This MILP returns in each iteration a flux pattern that is not a combination of previously found elementary flux
patterns and has the least number of reactions. Thus, it is guaranteed that only elementary flux patterns are found.
Due to the constraints of the MILP, it becomes infeasible if no further elementary flux pattern exists.
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Elementary Modes Corresponding Elementary flux patterns
Number Reactions Numbers Reactions

1 → S1 → S2 → S5 → S8 → S10 → 1 → S1, S10 →

2 → S1 → S2 → S6 → S8 → S10 → 1 → S1, S10 →

3 → S1 → S2 → S6 → S9 → S10 → 2 → S1, S9 → S10 →

4 → S1 → S3 → S5 → S8 → S10 → 1 → S1, S10 →

5 → S1 → S3 → S6 → S8 → S10 → 1 → S1, S10 →

6 → S1 → S3 → S6 → S9 → S10 → 2 → S1, S9 → S10 →

7 → S1 → S4 → S6 → S8 → S10 → 3 → S1 → S4 → S6, S10 →

8 → S1 → S4 → S6 → S9 → S10 → 2+3 → S1 → S4 → S6, S9 → S10 →

9 → S1 → S4 → S7 → S9 → S10 → 4 → S1 → S4 → S7 → S9 → S10 →

Table 1: List of EMs and elementary flux patterns in the example network. The third column gives the indices of the
elementary flux patterns that represent the flux of the EM in the subnetwork. The forth column gives the reactions of the
elementary flux pattern.

2.3 Comparison of EMs and elementary flux patterns

The most obvious difference between EMs and elementary flux patterns is that the latter are defined as set of
indices rather than vectors of fluxes. An EM represents a particular flux distribution in a network, in which
flux proportions are considered. In contrast, a flux pattern can correspond to several flux proportions within the
genome-scale system. However, most of the applications of EMs only require the set of non-zero indices of the
EMs [5].

From the definition of elementary flux patterns in equation 3 and 4 important conclusions about a flux vector
v ∈ Rn fulfilling the flux pattern condition for a certain elementary flux pattern sv can be drawn. v fulfills the
steady-state condition and hence it can be written as a positive linear combination of a set of h elementary modes
e1,...,eh. We can map each of these elementary modes to a corresponding flux pattern se1 ,..., seh in the subsystem
by identifying indices with non-zero fluxes in the elementary modes. It might appear that some elementary mode
does not use any reaction of the subsystem. Thus, the corresponding flux pattern corresponds to the empty set.
Since se1 ∪ ·· · ∪ seh = sv we can conclude that at least one se∗ ∈ {se1 · · ·seh} is equal to sv, else sv would not be
elementary but could be written as a combination of other flux patterns derived from some of the flux patterns
se1 ,..., seh . Hence, for each elementary flux pattern sv there exists at least one flux v that is an elementary mode and
fulfills the flux pattern condition for sv. In consequence, elementary flux patterns can be used to study EMs that go
through the entire system and use reactions of the subsystem.

2.4 Example

Next, we will outline the above presented concepts in more detail by way of a small example network comprising
10 species and 17 reactions. 7 of these reactions are considered to belong to the subsystem.

S1

S4 S7

S9

S10

S8

S5S2

S3 S6

Figure 1: Simple example network. Black arrows indicate the reactions in the subnetwork, species drawn in gray are
assumed external in Section 2.5.

The entire network contains 9 EMs and 4 elementary flux patterns in the subnetwork (Table 1). The lower number
of EMs in contrast to elementary flux patterns is due to the alternative reactions that lead from S1 to S8. Four of
the possible paths do not belong to the subsystem. This is exemplified by elementary flux pattern 1 which only
contains the production of S1 and the consumption of S10. On the scale of the entire system, this elementary flux
pattern represents the fluxes of the EMs 1, 2, 4 and 5. This example demonstrates how elementary flux patterns
can ease the analysis by “abstracting” fluxes through parts of the system that are of no interest. In a natural system
this may be relevant, for example, if we want to know which reactions of the tricarboxylic acid cycle are operative
in EMs of the entire network without analyzing that network completely. Another important point arises from EM
3. In this case, the corresponding flux pattern is the union of the elementary flux patterns 2 and 3.

2.5 Example with external species

In a next step, we analyzed the results we obtained when defining the species not belonging to the subsystem as
external. The results can be found in Table 2.

Here the potential problems arising if species are considered external become obvious. Thus, only EMs 9 and 10
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Elementary Modes
Number Reactions

1 → S1 → [S2]

2 → S1 → [S3]

3 [S8] → S10 →

4 [S2] → S6 → [S8]

5 [S3] → S6 → [S8]

6 [S2] → S6 → S9 → S10 →

7 [S3] → S6 → S9 → S10 →

8 → S1 → S4 → S6 → [S8]

9 → S1 → S4 → S6 → S9 → S10 →

10 → S1 → S4 → S7 → S9 → S10 →

Table 2: List of EMs when setting the species S2, S3, S5 and S8 of the example to external. EMs only representing
reactions among external species have been omitted for clarity. External species are denoted with square brackets.

represent a true flux through the reaction network. The reason for this discrepancy arises from the fact that only
two of the EMs contain the influx of S1 and the outflux of S10 which is necessary for any steady-state flux in this
network. This is exemplified by EM 1. In this EM the definition of S2 to be external leads to the assumption that
there is a pathway that uses up S2 independently from the reactions in the subnetwork. However, this assumption
is false since each flux in the system can only be in steady state if the outflux of S10 is used.

In the above example, only monomolecular reactions are included. In the more general situation where reactions
of higher molecularity occur, another interesting case can arise. Consider, for example, the following system

→ A + 2 B
2 A + B →

with species A defined as external. In this system we find an elementary mode using an equal flux of reaction 1
and 2, while there is no elementary mode if no species is set to external. In the previous examples, we could still
obtain a steady-state flux by combining infeasible elementary modes with others. In this system in contrast, we
find an elementary mode even though there is no steady-state flux at all. In consequence, we also do not find any
elementary flux pattern for whatever subsystem chosen.

2.6 Checking the feasibility of elementary modes

Next we will outline how it can be checked, whether an elementary mode e ∈ Rk is part of a steady-state flux
v ∈ Rn through the entire network. This check can be formulated in the terms of the following linear program

(1) M ·v = 0
(2) ∀i ∈ {1, ...,k} : ei = vi · c
(3) v ≥ 0
(4) c ≥ 1

with the variables v and c. Since we only want to test the existence of v it is sufficient to check the feasibility of
the linear program. Thus, we determine whether there is a steady state flux v in the complete system that uses a
multiple of the fluxes of the elementary mode in the subsystem. Likewise, the flux through reactions having a zero
entry in e is constrained to zero. We can multiply e with a non-zero number c, since an elementary mode only
gives flux ratios and thus can be scaled. Furthermore, we would normally only require that c > 0, but since there
is no upper bound for v we can translate this constraint into c ≥ 1.

3 Application
In this Section we will outline the concept of elementary flux patterns by way of two example subsystems from
the metabolism of Escherichia coli that have been studied previously using EMs. The first system is a model of
the tricarboxylic acid cycle (TCA cycle), glyoxylate shunt and associated reactions and has been analyzed in [9].
The second system is an integrated model of glycolysis and pentose phosphate pathway presented by [10]. We will
study both systems in context of a genome-scale model of E. coli that has been presented by [3]. The genome-scale
model was modified by adding an outflow for each external species, which was subsequently set to internal. Inflows
for glucose and other basic compounds were added to allow for the production of biomass (see Section 2.3for a
complete list). The final network contains 1972 species and 3559 reactions.

We mapped the systems that have been used for EM analysis to the corresponding subsystems in the genome-scale
model by identifying those reactions in the genome-scale model that belong to the particular system under study.
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# Reaction Functional Assignment
1 Arg + SuccCoA → CoA + Sucarg Arginine degradation
2 Hom + SuccCoA → CoA + Suchms Methionine synthesis
3 SuccCoA → MmCoA Propionate utilization
4 H2O + SuccCoA + T hd p → CoA + Sl2a6o Lysine synthesis

Table 3: List of reactions consuming succinyl-CoA in the network of [3]. A list of abbreviations can be found in
Appendices B and C.

We analyzed these systems under two aspects. First, we checked whether the EMs that have been obtained in the
original publications indeed belonged to a steady-state flux in the genome-scale model. Thus, we checked for each
EM if there exists a steady-state flux through the entire system that uses exactly the flux rations of the EM in the
subsystem. This can be done using a linear program outlined in Section 2.6. Second, we analyzed the elementary
flux patterns the subsystems give rise to.

3.1 Case study I: TCA cycle

Next, we will analyze a model of the tricarboxylic acid cycle (TCA cycle), glyoxylate shunt and associated reac-
tions in E. coli that has been previously analyzed using EMs [9].

We did not incorporate the output fluxes used in the EM analysis in the subsystem. These reactions can be inter-
preted as abstractions of other reactions in a larger network that are not modelled in the network analyzed with
EMs. As outlined in Section 2.5, using such fluxes underlies the assumption that the species consumed by them can
be used up by reactions outside of the subsystem without requiring an additional flux through it. Since elementary
flux patterns explicitly take into account the complete network, we do not need to add such abstract reactions.

Glu

OG

Succ

FumMal

OAA

Asp
AspC

PEP

2−PG

Pyr AcCoA Ala

OG

IsoCit

Cit Glu

Pyr

PykPps

Glx
SucCoA

Ppc
Pck

SucAB/LpdA

SucCD

Acn

GltA

Icd

Gdh
Icl

AceB/GlcB

Sdh/Frd

AspA

Fum

Mdh

AceEF

Eno

Figure 2: Scheme of part of the central metabolism of E. coli, which is studied as a subnetwork of a genome-scale
network in case study I. Irreversible reactions are indicated by unidirectional arrows. A list of abbreviations can be found
in Appendices A and C.

Analysis of EMs In a first step we analyzed the 16 EMs that have been identified in [9]. We found that only 10
out of the 16 EMs are indeed part of a steady-state flux within the entire system. An analysis of the remaining
EMs reveals that they all produce succinyl-CoA. In the genome-scale system we found 4 reactions consuming this
species (Figure 3). However, 3 of these reactions require an additional species that can only be produced from
intermediates of the subsystem to be part of a steady-state flux.

An example is entry 4 in Table 3 containing the consumption of succinyl-CoA during lysine synthesis. Later in
that pathway, succinate is released. However, this reaction also consumes Thdp which can be produced only from
oxaloacetate. Oxaloacetate in turn can only be produced by reactions within the subsystem. A similar line of
arguments can be applied to entry number 3 in Table 3. Even though this reaction does not require an additional
educt, the further steps in propionate utilization lead to a conversion of oxaloacetate to pyruvate. Again, this
reaction can only be in steady state if additional reactions of the subsystem are used to replenish oxaloacetate.

Analysis of elementary flux patterns In a next step we analyzed the elementary flux patterns of the subsystem.
This system gives rise to 75 elementary flux patterns. In contrast, [9] found only 16 EMs. The reason for this
difference is the larger number of possible inputs and outputs of the subsystem to the entire system. On the other
hand, this reflects the central role of the TCA cycle in metabolism.

In some cases, elementary flux patterns are cryptic when only considering the reactions of the subsystem they
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contain. Therefore, the analysis of the EMs of the entire system containing them yields further insight. One
example is the reaction of malate to oxaloacetate catalyzed by malate dehydrogenase (Mdh) and malate:quinone
oxidoreductase (Mqo). We took into account the network analyzed in [9] and hence we added only the reaction
catalyzed by Mdh to the subsystem. In consequence, an elementary flux pattern producing malate and consuming
oxaloacetate not necessarily incorporates the reaction catalyzed by Mdh to close the gap between both species.
The EM associated to such a flux pattern can alternatively use Mqo not present in the subsystem. As a result we
find many elementary flux patterns not containing the reaction of Mdh. In such a case, the associated EM uses
Mqo instead.

Entry points into the subsystem As a starting point for our analysis we considered glycolysis as the principal
pathway for the production of TCA cycle intermediates. Nevertheless, many pairs of elementary flux patterns only
differ in a few steps of the routes by which these intermediates are produced. In each such pair, one elementary
flux pattern uses phosphoglycerate as entry point, while the other uses pyruvate. In the entire network there are
many possible routes on which pyruvate can be produced from glucose without the use of reactions of glycolysis
that are part of the subsystem (e.g., the Entner-Doudoroff pathway, Figure 4 B).

One of the principal routes on which intermediates of glycolysis can enter the TCA cycle proceeds via the pyruvate
dehydrogenase producing acetyl-CoA from pyruvate. However, the consumption of acetyl-CoA does not allow a
positive production rate of any of the species of the TCA cycle [14]. If TCA cycle intermediates are to be consumed
they need to be replenished using either PEP carboxykinase to produce oxaloacetate from phosphoenolpyruvare or
the glyoxylate bypass to produce malate and succinate from citrate and acetyl-CoA. In this context, we found an
elementary flux pattern that was capable of producing phosphoenolpyruvate from acetyl-CoA via the glyoxylate
bypass. This indicates the third entry-point into the subsystem via the intermediate of acetyl-CoA. However,
acetyl-CoA is not produced from reactions of the subsystem but by another pathway. An example is the above
mentioned Entner-Doudoroff pathway producing pyruvate and a subsequent conversion of pyruvate into formate
and acetyl-CoA using the pyruvate formate lyase (not present in the subsystem).

II

I

III IV

Glu

OG

Succ

FumMal

OAA

Asp
AspC

PEP

2−PG

Pyr

Glucose

AcCoA Ala

OG

IsoCit

Cit Glu

Pyr

PykPps

Glx
SucCoA

Ppc
Pck

SucAB/LpdA

SucCD

Acn

GltA

Icd

Gdh
Icl

AceB/GlcB

Sdh/Frd

AspA

Fum

Mdh

AceEF

Eno

Figure 3: Entry points into the TCA cycle. (I) Glycolysis. (II) Entner-Doudoroff-pathway. (III) Entner-Doudoroff-
pathway and production of acetyl-CoA from pyuvate, e.g., using pyruvate formate lyase. (IV) Production of glyoxylate
using an alternative pathway through nucleotide synthesis (Figure 4 A). Dashed arrows correspond to schematic reactions.
A list of abbreviations can be found in Appendices B and C.

Isocitrate lyase is an essential enzyme in the glyoxylate bypass. Nevertheless, we found several elementary flux
patterns that used up glyoxylate but did not incorporate isocitrate lyase. Most interestingly whenever we encoun-
tered such a case, aspartate aminotransferase was operative. Aspartate aminotransferase produces aspartate and
oxoglutarate from glutamate and oxaloacetate. The consumption of glutamate can be counter-balanced by the
amination of oxoglutarate. Aspartate in turn is essential for a reaction in the synthesis of the purine base inosine.
Using several reactions this compound is subsequently converted into glyoxylate via the intermediate of inosine-
monophosphate and urate (Figure 4 A). This pathway corresponds to the fourth entry point into the subsystem.

3.2 Case study II: Glycolysis and pentose phosphate pathway

Next, we will analyze a model of glycolysis and pentose phosphate pathway that has been studied in [10]. The
corresponding subsystem is depicted in Figure 5.

Analysis of EMs In a first step we analyzed the 7 EMs that have been found by [10]. In contrast to the previous
example we found that all EMs are part of steady-state fluxes within the genome-scale system and thus were indeed
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Purine−Biosynthesis

Eda
G3P

PyrEdd 2−Ddg6P

A
5−Aizc

Asp
AicsPurC PurB

Fum
Aicar Urdglyc AllA

Glx

B
Glc GlcnGcd/YliI IdnK/GntK

IMP

6−Pg

Figure 4: Alternative pathways in the central metabolism of E. coli. Dashed arrows represent condensed reactions.
A Alternative glyoxylate producing pathway. B Entner-Doudoroff pathway. A list of abbreviations can be found in
Appendices B and C.
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Figure 5: Scheme of glycolysis and pentose phosphate pathway in E. coli which is studied as the second subnetwork.
Species connected by dashed lines are identical. A list of abbreviations can be found in Appendices B and C.

feasible.

Analysis of elementary flux patterns This subsystem gives rise to 87 elementary flux patterns. Thus, the in-
crease from the 7 EMs analyzed in [10] is even greater than in case study I. This large increase is due to the smaller
number of exchange reactions that have been used in [10]. Only an outflow of pyruvate and ribose 5-phosphate
had been added to model the production of TCA cycle intermediates, respectively, nucleotides. However, there is a
drain from several additional species of this subsystem to other compounds that are necessary for E. coli to survive,
for instance phosphoenolpyruvate, utilized in the production of aromatic amino acids, or fructose 6-phosphate, for
the production of cell-membrane constituents.

Entry points into the subsystem Similar to the first case-study we examined on which pathways glucose can be
converted into intermediates of the subsystem. Thus, we examined on which pathways the EMs associated to the
elementary flux patterns used up glucose before they used reactions from the subsystem.

Even though glycolysis is the principal pathway of glucose metabolism there is a large number of alternative path-
ways that can yield intermediates of glycolysis and pentose phosphate pathway from glucose (Figure 6). In the
usual pathway, glucose is phosphorylated either by a phosphotransferase system (PTS) or by glucokinase. The al-
ternative pathways use a route over gluconate or fructose. In the former case gluconate is converted into the pentose
phosphate pathway intermediate 6-phospho-D-gluconate. Subsequently, it can either enter glycolysis through the
pentose phosphate pathway or use the Entner-Doudoroff pathway yielding glyceraldehyde 3-phosphate and pyru-
vate. Using the route via fructose we find two further pathways. Fructose is converted into fructose 6-phosphate
which is an intermediate of glycolysis. Subsequently, an alternative route to the reaction of fructose 6-phosphate to
glyceraldehyde 3-phosphate and dihydroxyacetone catalyzed by phosphofructokinase and fructose-bisphosphate
aldolase can be used. This alternative pathway uses fructose 6-phosphate aldolase to produce dihydroxyacetone
and glyceraldehyde 3-phosphate. Dihydroxyacetone is subsequently phosphorylated to dihydroxyacetone phos-
phate.

4 Conclusion
In this work we introduced the concept of elementary flux patterns which allows a much more reliable analysis of
fluxes in genome-scale metabolic networks. It enables a consistent application of many of the concepts from EM
analysis to such networks. These applications include the determination of minimal feasible growth media and the
analysis of the outcome of knockout experiments. Even though the analysis concentrates on fluxes within a subnet-
work, elementary flux patterns are tightly coupled to EMs on the genome scale. Hence, in contrast to EM analysis,
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Figure 6: Entry points into the subsystem. Pathways for the production of glycolysis and pentose phosphate pathway
intermediates from glucose in the growth media (bold lines). Where possible, identical species have been connected by
dashed lines. The reversibility of reactions leading into the subsystem has been omitted for clarity. A list of abbreviations
can be found in Appendices B and C.

the information about the complete network is not ignored. In consequence, problems due to the introduction of
external species and exchange fluxes are overcome. By analyzing the EMs obtained from a previously published
work, we demonstrated that an improper definition of external species can lead to wrong results. Thus, EMs can
be incomplete, i.e., additional reactions are necessary to guarantee a steady state, or might not even be part of any
steady-state flux in the entire system.

Using elementary flux patterns several important issues in the analysis of metabolic networks are addressed. First,
even though a flux pattern only represents a set of reactions rather than specific fluxes, most of the applications of
EMs only require these sets [5]. Thus, many of the applications of EMs can be easily used in combination with
elementary flux patterns instead.

Second, by a non-constrained topology of the reactions of the subsystem it is, for example, possible to analyze
certain parts of a pathway in detail, while others can be left out. In consequence, the emphasis of the analysis can
be scaled as desired. Thus, also the combinatorial explosion seen in the analysis using EMs can be avoided.

Third, by considering the entire network, the information on all possible pathways connecting two species is main-
tained. In Section 3.1 we started with 2-phosphoglycerate as principal source for intermediates of the subsystem.
Nevertheless, we found 4 possible routes that were able to provide other intermediates including a not yet known
pathway for the production of glyoxylate. In the context of a subsystem comprising glycolysis and pentose phos-
phate pathway we found 6 different pathways on which intermediates of the subsystem can be produced from
glucose. The incorporation of all the knowledge contained within a genome-scale network into flux analysis is of
importance, since a comprehensive knowledge about the (to-date known) 3359 reactions and 1972 species in the
metabolism of E. coli is difficult to maintain. In consequnce, since elementary flux patterns take into account all
this information, they more faithfully reflect the metabolic capabilities of an organism.
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Appendices

A Input-Species
The following species are provided as input to the model. They are necessary to produce all biomass metabolites

D-glucose, ammonium, nitrate, sulfate, Fe2+, Fe3+, CO2, H+, potassium, calcium, cobalt, molybdate, sodium,
phosphate, oxygen, water, chloride, Cu2+, Mg2+, Mn2+ and Zn2+

B Abbreviations
Table 4: List of abbreviated species names.

Abbreviation Species
1,3-Dpg 3-phospho-D-glyceroyl phosphate
2-Ddg6P 2-dehydro 3-deoxy-D-gluconate 6-phosphate
2-PG D-glycerate 2-phosphate
3-PG D-glycerate 3-phosphate
5-Dglcn 5-dehydro-D-gluconate
5-Aizc 5-amino 1,5-phospho-D-ribosyl-imidazole 4-carboxylate
6-Pg 6-phospho-D-gluconate
AcCoA acetyl-CoA
Aicar 5-Amino 1,5-Phospho-D-ribosyl-imidazole 4-carboxamide
Aics S-2,5-amino 1,5-phospho-D-ribosyl-imidazole 4-carboxamidosuccinate
Ala L-alanine
Asp L-aspartate
Cit citrate
CoA coenzyme A
DHA dihydroxyacetone
DHAP dihydroxyacetone phosphate
Ery4P D-erythrose 4-phosphate
F6P D-fructose 6-phosphate
Fbp D-fructose 1,6-bisphosphate
Fru D-fructose
Fum fumarate
G3P glyceraldehyde 3-phosphate
G6P D-glucose 6-phosphate
Glc D-glucose
Glcn Gluconate
Glu L-glutamate
Glx glyoxylate
H2O water
IMP inosine monophosphate
IsoCit isocitrate
Mal L-malate
MmCoA R-methylmalonyl-CoA
OAA oxaloacetate
OG 2-oxoglutarate
PEP phosphoenolpyruvate
Pyr pyruvate
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Abbreviation Species
Q8 Ubiquinone-8
Q8H2 Ubiquinol-8
R5P α-D-Ribose 5-phosphate
Ru5P D-ribulose 5-phosphate
Sed7P sedoheptulose 7-phosphate
Sl2a6o N-succinyl 2-L-amino 6-oxoheptanedioate
SucArg N2-succinyl-L-arginine
Succ succinate
SucCoa succinyl-CoA
Suchms O-succinyl-L-homoserine
Thdp 2,3,4,5-Tetrahydrodipicolinate
Urdglyc ureidoglycolate
Xyl5P D-xylulose 5-phosphate

C Enzyme names

Table 5: List of abbreviated enzyme names.

Abbreviation Species
AceB/GlcB malate synthase
AceEF pyruvate dehdrogenase
Acn aconitase
AllA ureidoglycolate hydrolase
AspC aspartate aminotransferase
Eda 2-keto-3-deoxy-6-phosphogluconate aldolase
Edd 6-phosphogluconate dehydratase
Eno enolase
Fba fructose-bisphosphate aldolase
Fbp/GlpX fructose-1,6-bisphophatase
Fsa/TalC Fructose 6-phosphate aldolase
Fum fumarase
Gap glyceraldehyde-3-phosphate dehydrogenase
Gcd/YliI glucose dehydrogenase / aldose sugar dehydrogenase
Gdh glutamate dehydrogenase
GltA citrate synthase
Gnd 6-phosphogluconate dehydrogenase
Gnt/IdnT gluconate transporter / GntP family L-idonate transporter
Gpm phosphoglycerate mutase
Icd isocitrate dehydrogenase
Icl isocitrate lyase
IdnK/GntK D-gluconate kinase
IdnO 5-keto-D-gluconate reductase
IdnT GntP family L-idonate transporter
Mak manno(fructo)kinase
Mdh malate dehydrogenase
Mqo malate dehydrogenase
Pck phosphoenolpyruvate carboxykinase
Pfk phosphofructokinase
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Abbreviation Species
Pgi glucose-6-phosphate isomerase
Pgk phosphoglycerate kinase
Pgl 6-phosphogluconolactonase
Ppc phosphoenolpyruvate carboxylase
Pps phosphoenolpyruvate synthase
Pts phosphotransferase system
PtsHI+DhaMLK Dihydroxyacetone phosphotransferase
PurB adenylosuccinate lyase
PurC phosphoribosyaminoimidazole-succinocarboxamide synthetase
Pyk pyruvate kinase
Rpe D-ribulose-5-phosphate 3-epimerase
Rpi ribose-5-phosphate isomerase
Sdh/Frd succinate dehydrogenase / fumarate reductase
SucAB/LpdA a-ketoglutarate dehydrogenase / dihydrolipoamide dehydrogenase
SucCD succinyl-CoA synthetase
Tal transaldolase
Tkt transketolase
Tpi triosephosphate isomerase
XylA D-xylose isomerase
YbiV HAD phosphatase
Zwf glucose-6-phosphate dehydrogenase
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