
EXTENDING BUILDINGS’ THERMAL-DYNAMICS MODEL IN MODELICA

WITH EXTERNAL ILLUMINATION MODEL

A. Sodja, B. Zupančič

Faculty of Electrical Engineering, University of Ljubljana

Corresponding author: Anton Sodja
Faculty of Electrical Engineering

University of Ljubljana – 1000 Ljubljana, Tržaška 25 – Slovenia
�����������	
���������

Abstract. An intelligent dynamic building’s envelope is a promising concept for future low-energy
building design. For assuring pleasant living conditions multiple quantities have to be controlled and
due to complexity and diversity of systems (living and working rooms), the corresponding control can
become very complicated. A good reusable model can play crucial role in the successful control design
procedure.

This paper presents integration of the Radiance lighting simulation tool in our previously built model
of the building’s thermal dynamics in Modelica. With incorporation of the Radiance in Modelica a
calculation of illumination and thus fully functional model is obtained, which is due to advantages of
object-oriented modeling easily reusable and extensible to various types of buildings.

1 Introduction

The concept of modern energy-efficient building incorporates use of solar energy to reduce the requirement for
active heating and cooling sources in assuring thermal comfort. There are many ideas for the design of energy-
efficient buildings [9]. An important aspect of the design is the harmonization of the solar energy transferred
through the glazing with the illumination of the interior [11, 5]. A shading is needed to prevent excess glittering
occurring especially during low winter sun.

One approach to achieve the harmonization of proper illumination and solar energy gain is automatic control of
window shading [3, 8] by a suitable controller. However, at the same time minimization of the cost of active heat-
ing and cooling respectively, should be achieved. The active system of shading or, more generally, dynamically-
changing building’s envelope, provides a good possibility to improve low-energy buildings’ design and simulta-
neously assure pleasant living condition along with considerable energy savings. On the other hand, the required
control algorithms tend to be very complicated due to the complexity and multivariability of the controlled systems
(at least the illumination and temperature of the interior air must be taken into account). An efficient control design
must be based on a model which incorporates thermal and lighting effects. With modeling and simulation before
real implementation much greater flexibility is achieved and development time is considerably shorten.

Our previous work was based on experimentations with a real test chamber [6]. To assist the control development
of the illumination and thermal status and to improve knowledge about the system (test chamber), we started with
modeling in Matlab/Simulink [12]. This model was found to be inappropriate due to disadvantages of the non-
object-oriented modeling tool when the extension to experimentations on a real-world buildings are required. So we
decided to reimplement it in a more powerful modeling tool Dymola [10] which offers modeling in object-oriented
modeling language Modelica [2]. Thermal dynamics of the building in our model is described with differential-
algebraic equations using energy balance principle. With object-oriented approach an intuitive, reusable and easily
expandable modeling of buildings’ thermal dynamics is enabled. Similarly flexible and easily maintainable model
was desired also for illumination. For this purpose we adapted Radiance lighting simulation and rendering tool
[7] and incorporated it in Modelica model of thermal dynamics.

In the work Radiance illumination model is presented together with the developed interface to Modelica. The
usability of the proposed approach is later illustrated on an example of the test chamber illumination.

2 Illumination model in Radiance

Radiance lighting simulation tool is a powerful rendering package using backward ray-tracing and is primarily
intended for visualization and lighting analysis [7]. The tool reads scene-description sources and then generates
image of a specific view or trace a single ray from a particular stand-point in a selected direction. During the
simulation run of the building’s thermal response and illumination also the scene changes. In particular, the sun’s
position (sun inclination angle) and geometry of the transparent parts of the building’s envelope are calculated.
In order to diminish overhead of reading scene-description sources anew in each simulation step, the Radiance
tracing utility was changed to re-read only parts of the scene that changes during the simulation run. That implies
separating scene-description sources for static and dynamic part of the scene. In contrast to static-scene description,
in the dynamic part some dimensions/quantities (e.g., shape of windows’ shading, intensity of solar radiation, etc.)

1439

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

of the scene’s objects are designated as variables (beside initial value, also the name of the variable is provided). So,
Modelica model sends two types of information to Radiance submodel: the change of scene (change of variables’
values) and position and orientation of the spot of interest. Obviously, Radiance subsystem sends back to Modelica
the information about illumination value of the spot.

The interface at the side of the Radiance tracing utility consists of four functions (the Radiance API):

int init_radiance (char *octree , char * dyn_files);

int finalize_radiance ();

void set_variable (char *varname, double val);

int get_illumin (double *orig , double *direc , double * retval);

The first two represent initialization and finalization routines. In initialization one the scene data is read, namely the
static part from the file ������ and dynamic part from the files stated as comma-separated-list ���	
���. The
third function sets variable ������� to value ��� and the model is not refreshed (the dynamic part of the scene
is re-read) till the forth function, in which the majority of the work is done, is called. Function ���	�������

receives position and orientation (���� and ����� respectively) of the spot of interest as the input parameters and
returns computed illumination value in the variable ������ (at the destination to which ������ points to). In the
finalization routine, memory allocated in initialization phase is freed.

The modified Radiance tracing utility is compiled and two static libraries are generated: librtrace.a and librtrad.a.
The declaration of API (functions presented in this section) is made available in the header file radiance.h. The
header file and libraries are then used in the process of translation and compilation of the Modelica model as
illustrated in Figure 1.

3 Modelica Interface

Models in Modelica can interact with other models through the use of external functions [4, 2] written in other
programming language. Dymola in current version supports only C language [1]. For each external function a
Modelica interface must be declared.

In our example, the Radiance API consists of four functions (described in the previous section), two of them,
initialization and finalization routines, should be called at the beginning and at the end of the simulation run
respectively and the remaining two are called during the simulation run. In object-oriented manner, we organize
the access to these four functions as a class. Each function have a Modelica interface nested inside the class and
initialization and finalization routines of the Radiance tracing utility are called at initialization and termination of
the class instance (that means before and after simulation run). In Figure 2 the principle of the communication

librtrace.a
librtrad.a

*.oct, *.rad

Radiance

*.mo

dsmodel.c

radiance.h

dsmodel.o

dymosim

Dymola

Simulation

Compilation

Linking

Translation

annotate

#include

Figure 1: Scheme of translation and compilation of the Modelica model with Radiance extension.

1440

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

Radiance tracing utility

Radiance
interface

API

Model
of the

illumination

Instance of the class
RadianceInterface

Modelica model

Modified Radiance

Figure 2: Scheme of communication interfaces of Radiance tracing utility and model in Modelica

between Radiance and Modelica model is depicted: the communication interface on the side of the Radiance
provides four C functions which are called inside our interface class in Modelica. The information is finally
conveyed to other parts of the model by use of Modelica connectors. The listing of the obtained interface class is:

partial block RadianceInterface " Interface to Radiance"
parameter String octree "path to the octtree with static data ";
parameter String dynfiles "comma separated list of files ";
annotation(Include="#include <radiance .h>", Library={" rtrace "," rtrad "});

5protected
function initRadiance " Initialize connection with Radiance"

input String octree ;
input String dynfiles ;
output Integer status ;

10external "C" status = init_radiance (octree , dynfiles);
end initRadiance ;

function termRadiance "Terminate connection with Radiance"
output Integer status ;

15external "C" status = finalize_radiance ();
end termRadiance;

function setVariable
input String variable ;

20input Real newValue;
external "C" set_variable (variable , newValue);

end setVariable ;

function computeIllumination
25input Real[3] origVec;

input Real[3] direcVec ;
output Real illumination ;
external "C" get_illumin (origVec , dirVec , illumination);

end computeIllumination ;
30

final parameter Integer status = initRadiance (octree , dynfiles);

equation
when initial () then

35assert (status == 0, "Radiance intitialization error ");
end when;

when terminal () then
assert (termRadiance() == 0, "Radiance termination error ");

end when;
40end RadianceInterface ;

It can be observed that RadianceInterface is declared as ������� ���	
. The ���	
 is a special restricted
class type in Modelica which have no internal state and ������� designates that an instance of the class is not
allowed to be created. That is because the class represents solely a Modelica interface class to Radiance models.
A complete class suitable for inclusion in our model of building’s thermal dynamics must define input/output
connectors and is thus limited to only a single Radiance scene configuration. In object-oriented language such as
Modelica the general-purpose parts of the model can be elegantly separated from a more specific ones through the
use of inheritance. Such approach is used also in this case. This class is intended to be a base class for interface
classes created for specific Radiance illumination models.

Further the needed parameters are defined as arguments for initialization function and in line 4 the instructions
to Dymola’s compiler and linker in form of an annotation are given. Here definition of external C functions and
libraries, which should be additionally included in the generation of model’s executable, are listed.

1441

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

Figure 3: View of the test chamber from the south side

At the end, initialization and finalization of Radiance subsystem must be invoked. For this purpose, Modelica
offers two events: functions initial() and terminal() return true at time zero and at final time of the simulation
run respectively. Events are handled inside ���� clauses in lines 34 and 37. However, initialization function
of Radiance subsystem is not called during initial() event handling, but this event happens at time zero of the
simulation run, when all initial values of the states are already determined. In the determination of initial states
of the model, the simulator might claim output values from Radiance subsystem and in this case Radiance would
crash while Radiance model is not initialized yet. So we introduce parameter status in line 43. It has a value
returned by initialization function initRadiance. Correctness of the initialization (value of parameter status) is
checked at the initial() event in line 31.

4 Illumination model of the test chamber

The used test chamber is shown in Figure 3. It is square-shaped with a single south-facing window. A roller blind
with variable position is installed on outer side of the window. An illumination sensor is placed in the middle of
the ceiling facing downwards (Figure 4).

The Radiance model of the test chamber is simple, consisting of only three objects that changes during the simu-
lation run: position of the sun, intensity of the solar radiation and position of the roller blind (transparent area of
the window).
The input data to Radiance model are the time of the day (needed to calculate position of the sun), solar radiation
intensity (it is used also for estimation of the brightness of the sky) and the position of the blind (0 is completely
opened and 1 is completely closed). The model is extended from the RadianceInterface model. In the extended
model the time of the day is calculated as the sum of offset (the start time of the simulation run) and the simulation
time which is available as a global variable ���� in Modelica. So only two inputs are needed: the intensity of solar
radiation and the position of the blind while the output is illumination calculated from the position and orientation
of the sensor on the ceiling. The inputs and outputs are defined as follows:

import SI = Modelica. SIunits ;
import Modelica.Blocks. Interfaces .*;
RealInput SolarIntensity (redeclare type SignalType = SI . RadiantIntensity);
RealInput BlindPosition (redeclare type SignalType = Real (min=0, max=1));
RealOutput RoomsIllumination(redeclare type SignalType = SI . Illuminance);

south

illumination
sensor

roller
blind

Figure 4: The scheme of test chamber with roller blind and illumination sensor configuration

1442

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

Additional to input and output declaration, the following parameters have to be defined:

parameter SI.Time initTime ;
parameter SI.Distance sensorPos [3];
parameter Real sensorOrient [3];

The first represents the start time of the simulation in seconds from the start of the year, and the last two are position
and orientation of the sensor.

As computationally-expensive illumination computing in each simulation step should be avoided, the calculations
only in discrete times are enabled. In our case 5 min interval is selected (the same as the sampling interval of the
solar radiation-intensity measurements which are routed to the input in our model). At each sampling time the
following calculation is performed:

when sample(0,300) then
(hour,minutes) := time_indices (initTime+time);
setVariable ("hour",hour);
setVariable ("min",minutes);
setVariable (" blind_pos ", BlindPosition);

RoomsIllumination := computeIllumination (sensorPos , sensorOrient);
end when;

Firstly, the new dimensions’ values are set with ���������	� calls and then the new illumination value is recom-
puted by calling
������		���������.

5 Conclusion

When modeling complex systems, like in the paper presented model of living conditions in buildings, a need to
include submodels implemented in other modeling tools often arises. It can happen because the primary modeling
tool is not powerful enough or a required submodel is already realized in an other modelling tool and reimplemen-
tation would mean an extensive work.

Modelica has a well defined interface for the use of external functions and we were able to implement clear inter-
face to Radiance lighting simulation tool in the sense of easy integration to existing model of building’s thermal
dynamics. No nasty hacks were needed and easy reusability and extensibility, as one of the main advantages of the
object-oriented modeling, were not lost or diminished.

However, a condition for the described smooth incorporation of external model in the Modelica is, that external
submodel has no dynamics, i.e., it has no internal continuous states [4].

Additional issue which was not exposed in the paper is the requirement that interface class to Radiance must be
a singleton. This is not assured with implementation in Modelica and also the language Modelica does not offer
any feature which could be used to assure creation of only one instance of the class. The problem could be solved
at the side of the Radiance by starting Radiance as a stand-alone process and establish connection to each process
(e.g., through pipe or sockets). Of course it results in additional communication costs and more complex interface
or in modifying Radiance program to support serval submodels simultaneously. However, that is very tedious task.
Because we do not expect the mentioned situations in the future, we left this problem unsolved.

As the stress in the present work is on the interface development from Radiance lighting simulation tool to Mod-
elica, the model of building’s thermal dynamics with added illumination modeling is neither given nor validated.
The only important fact is that the proposed modeling environments can successfully communicate.

In the future work, we intend to validate our model on a real building and use it for control design as well as for
teaching.

6 References

[1] Dynasim AB. Dymola User’s Guide, Version 5.3d. Sweden, Lund, 2004.
[2] Modelica Association. Modelica - A Unified Object-Oriented Language for Physical System Modeling. Language Specification, Version

2.2. February 2005. ������������	
�����	��.
[3] A. K. Athienitis and A. Tzempelikos. A methodology for simulation of daylight room illuminance distribution and light dimming for a

room with a controlled shading device. Solar Energy, 72, 2002.
[4] T. Blochwitz, G. Kurzbach, and T. Neidhold. An external model interface for modelica. In Proceedings of Modelica’ 2008, Bielefeld,

Germany, 2008. The Modelica Association and University of Applied Sciences Bielefeld.
[5] E. L. Krüger and P. H. T. Zannin. Acoustic, thermal and luminous comfort in classrooms. Building and Environment, 39(9), 2004.
[6] M. T. Lah, B. Zupančič, J. Peternelj, and A. Krainer. Daylight illuminance control with fuzzy logic. Solar energy, 80, 2006.
[7] G. W. Larson and R. Shakespeare. Rendering with Radiance. Morgan Kaufmann Publishers, San Francisco, California, 1998.
[8] S. Onaygil and Ö. Güler. Determination of the energy saving by daylight responsive lighting control systems with an example from

istanbul. Building and Environment, 38(7), 2003.
[9] I. Sartori and A. G. Hestnes. Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and

Buildings, 39(3), 2007.
[10] A. Sodja and B. Zupančič. Some aspects of thermal and radiation flows modelling in buildings using modelica. In Tenth International

Conference on Modeling and Simulation. EUROSIM-UKSIM, 2008.

1443

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

[11] A. Tzempelikos. The impact of venetian blind geometry and tilt angle on view, direct light transmission and interior illuminance. Solar
Energy, 82, 200.

[12] I. Škrjanc, B. Zupančič, B. Furlan, and A. Krainer. Theoretical and experimental fuzzy modelling of building thermal dynamic response.
Building and environment, 36(9), 2001.

1444

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

