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Abstract. The method of harmonic linearization, Lyapunov quantities, numerical methods, and the
applied bifurcation theory together discover new opportunities for analysis of periodic oscillations of
control systems. In the present work these opportunities are demonstrated.

Here the quadratic system is reduced to the Lienard equation and by the latter the two-dimensional
domain of parameters, corresponding the existence of four limit cycles: three "small" and one "large",
was evaluated.

This criterion together with numerical estimates of oscillations amplitude give an estimate of occurrence
of chaotic oscillations in the Henon system. In the work it is also considered the Feigenbaum effect for
nonunimodal maps which describe discrete phase-locked loops.

1 Introduction
At present, the analytical methods for analysis of stability of automatic control systems are sufficiently well
developed. These are frequency criteria of absolute stability [6, 14, 16]. But quite another situation holds in
the case of analysis of periodic and chaotic oscillations of control systems. The method of harmonic linearization
(describing functions method), being also frequency in form, has considerable restrictions and the results beyond
these restrictions can be wrong. The method of harmonic linearization, numerical methods, and the applied
bifurcation theory together [11, 12] discover new opportunities for analysis of periodic oscillations of control
systems. In the present report these opportunities are demonstrated. We also formulate the circle criterion of
nonexistence of periodic oscillations of fixed period in discrete control systems. This criterion together with
numerical estimates of oscillations amplitude gives an estimate of occurrence of chaotic oscillations in the Henon
system. In the report it is also considered the Feigenbaum effect for nonunimodal maps which describe discrete
phase locked loops.

Here the quadratic system is reduced to the Lienard equation and by the latter the two-dimensional domain of
parameters, corresponding the existence of four limit cycles: three "small" and one "large", was evaluated. This
domain extends the domain of parameters obtained for the quadratic system with four limit cycles due to Shi in
1980.

2 Large and small limit cycles in quadratic system
The study of limit cycles of two-dimensional dynamical systems was stimulated by purely mathematical problems
(the center-and-focus problem, Hilbert’s sixteenth problem, and isochronous centers problem) as well as many
applied problems (the oscillations of electronic generators and electrical machines, the dynamics of populations).

One of the central problems [4, 5, 8, 18, 19, 20, 24] in studying small cycles in the neighborhood of equilibrium is
a computation of the Lyapunov quantities (or Poincare-Lyapunov constants).

In the present work the method of Lyapunov quantities is applied to investigation of small and large limit cycles.

Consider a system of two autonomous differential equations

dx
dt

= −y+ f (x,y),
dy
dt

= x+g(x,y),
(1)

where x,y ∈ R and the functions f (·, ·) and g(·, ·) are sufficiently smooth.

Suppose, the expansion of the functions f ,g begins with the terms of at least the second order and therefore we
have

f (0,0) = g(0,0) = 0,
d f
dx

(0,0) =
d f
dy

(0,0) =
dg
dx

(0,0) =
dg
dy

(0,0) = 0.
(2)
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and

f (x,y) =
n
∑

k+ j=2
fk jxky j +o

(
(|x|+ |y|)n

)
g(x,y) =

n
∑

k+ j=2
gk jxky j +o

(
(|x|+ |y|)n

) (3)

While the first and second Lyapunov quantities had been computed in the 40-50s of last century [2, 22], the third
Lyapunov quantity was computed in terms of fi j and gi j in [7, 15] and its expression occupies more than four pages
and the expression for the fourth Lyapunov quantity occupies 45 pages.

Here we will consider the expressions of Lyapunov quantities Li=1,...,5 for Lienard system, which are calculated by
symbolic calculation packages.

Assuming in (1)
f (x,y) ≡ 0

dg(x,y)
dy

= gx1(x), g(x,0) = gx0(x),
dgx0

dx
(0) = 0,

we obtain the following system
ẋ = −y,
ẏ = x+gx1(x)y+gx0(x),

(4)

Let gx1(x) = g11x+ ..., gx0(x) = g11x2 + ... Then

L1 = −π
4

(g20g11 −g21).

If g21 = g20g11, then L1 = 0 and

L2 =
π
24

(3g41 −5g20g31 −3g40g11 +5g20g30g11).

If g41 =
5

3
g20g31 +g40g11 − 5

3
g20g30g11, then L2 = 0 and

L3 =− π
576

(70g3
20g30g11 +105g20g51 +105g2

30g11g20 +63g40g31−63g11g40g30−105g30g31g20−70g3
20g31−45g61−

105g50g11g20 +45g60g11).

If g61 is determined from equation L3 = 0 then

L4 =
π

17280
(945g81 +4158g2

20g40g31 +2835g20g30g51−5670g20g30g11g50−4158g2
20g30g11g40 +2835g20g11g70 +

1215g30g11g60 +1701g40g11g50−4620g3
20g11g50−8820g3

20g30g31 +1701g30g40g31+2835g20g50g31−2835g20g2
30g31−

1701g2
30g11g40 +8820g3

20g2
30g11 +3080g5

20g11g30 +2835g20g3
30g11 +4620g3

20g51−1701g40g51−945g11g80−3080g5
20g31−

1215g60g31 −2835g20g71).

If g81 is determined from equation L4 = 0 then

L5 =
π

3110400
(−1621620g2

20g40g11g50 − 3118500g2
20g30g40g31 − 935550g20g30g11g70 + 2522520g4

20g30g11g40 −
935550g20g30g50g31−486486g20g30g2

40g11 +1403325g20g2
30g11g50−579150g2

20g30g11g60 +5128200g3
20g30g11g50−

561330g30g40g11g50 +127575g101 +1351350g3
20g71−127575g11g100−280665g40g71−200475g60g51−2402400g5

20g51 +
1601600g7

20g31−155925g80g31−1601600g7
20g11g30 +2402400g5

20g11g50−467775g20g2
50g11−4158000g3

20g3
30g11 +

1621620g2
20g40g51 +467775g20g70g31−467775g20g2

30g51 +467775g20g3
30g31 +200475g30g60g31 +5613300g5

20g30g31 +
467775g20g30g71−2113650g3

20g50g31 +280665g40g50g31−2522520g4
20g40g31−280665g2

30g40g31 +486486g20g2
40g31−

5613300g5
20g2

30g11 +467775g20g11g90 +280665g3
30g11g40−467775g20g4

30g11 +467775g20g50g51 +280665g30g40g51−
3014550g3

20g30g51 +4158000g3
20g2

30g31 +579150g2
20g60g31−1351350g3

20g11g70 +280665g40g11g70 +200475g50g11g60−
200475g2

30g11g60 +155925g30g11g80 +3118500g2
20g2

30g11g40 −467775g20g91).

2.1 Transformation between quadratic system and the Lienard system

Let us consider transformation of quadratic system to a special type of Lienard system

ẋ = y,
ẏ = −F(x)y−G(x), (5)

where
F(x) = (Ax+B)x|x+1|q−2,

G(x) = (C1x3 +C2x2 +C3x+1)x
|x+1|2q

(x+1)3
.

(6)
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We have the following results [10], [15].

Lemma 1. Suppose, for the coefficients A,B,C1,C2,C3,q of equation (5) the relations

(B−A)
(2q−1)2

((1−q)B+(3q−2)A) = 2C2 −3C1 −C3, (7)

(B−A)
(2q−1)2

(B+2(q−1)A) = C2 −2C1 −1. (8)

are satisfied. Then, by a nonsingular change, equation (5) can be reduced to the quadratic system

ẋ = p(x,y) = a1x2 +b1xy+α1x+β1y,
ẏ = q(x,y) = a2x2 +b2xy+ c2y2 +α2x+β2y.

(9)

with the coefficients b1 = 1, α1 = 1, β1 = 1, c2 = −q, α2 = −2,β2 = −1,

a1 = 1+
B−A
2q−1

,

a2 = −(q+1)a2
1 −Aa1 −C1,

b2 = −A−a1(2q+1).

(10)

Then, by the above relations for the Lyapunov quantities L1 and L2, we obtain the following.

Lemma 2. If L1 = L2 = 0, 5A−2Bq−4B = 0 and A �= B, AB �= 0, q �= 1

2
then

C1 = (q+3)
B2

25
− (1+3q)

5
,

C2 =
(
15(1−2q)+3B2

) 1

25
,

C3 =
3(3−q)

5
;

L3 = −πB(q+2)(3q+1)[5(q+1)(2q−1)2 +B2(q−3)]
20000

.

Thus, if the conditions of Lemma 2 and L3 �= 0, then by small disturbances of system we can obtain three "small"
cycles around the zero equilibrium of system and seek "large" cycles on a plane of the rest two coefficients (B,q).

Lemma 3. For b1 �= 0 system (9) can be reduced to the Lienard equation (5) with the functions

F(x) = R(x)ep(x) = R(x)|β1 +b1x|q,

G(x) = P(x)e2p(x) = P(x)|β1 +b1x|2q.

Here q = − c2

b1
,

R(x) = − (b1b2 −2a1c2 +a1b1)x2 +(b2β1 +b1β2 −2α1c2 +2a1β1)x+α1β1 +β1β2

(β1 +b1x)2
,

P(x) = −(
a2x2+α2x
β1+b1x

− (b2x+β2)(a1x2 +α1x)
(β1 +b1x)2

+
c2(a1x2+α1x)2

(β1+b1x)3
).

2.2 Computer experiments

The above results were applied to quadratic systems and the experiments for computing "large" cycles were carried
out.

In these experiments the reduction of quadratic system to the Lienard equation of special form (5)-(6) was used and
with its help a set of parameters B,q (Figure 1), which correspond to the existence of "large" cycle, was estimated.

In Figure 1 it is shown a domain bounded by straight lines, which correspond to the lines of reversal sign of the
third Lyapunov quantity. The curve C in the graph is a curve of the parameters B and q of the Lienard system,
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Figure 1: Domain of existence of "large" limit cycles.

which correspond to parameters of quadratic system, such that for these parameters the results of the existence of
four cycles were obtained in [21].

Since two Lyapunov quantities are equal to zero, by small disturbances it is possible to construct systems with
four cycles for the considered domain of parameters: three small cycle around one equilibrium and one large cycle
around another equilibrium.

Note that if the conditions of Lemma 2 are satisfied, then the changes of the time t → −t and the parameter of
system B → −B don’t modify system (6). Therefore, analogous domain of existence of large cycle, which is
symmetric about the straight line B = 0, holds.

These results were applied to quadratic systems and the experiments for computing "large" cycles were carried out.
Our experience of computations shows that it is practically impossible to trace "small" cycles in the neighborhood
of equilibrium, where the zero and the first Lyapunov quantities are equal to zero. However in a number of
computer experiments we can distinctly see "large" cycles.

For example, in Figure 2 it is shown a "large" cycle for the system

ẋ = 0.99x2 + xy+ y,
ẏ = 0.58x2 +0.17xy+0.6y2 −2x− y,

the parameters of which correspond to the point P in Figure 2.

Figure 2: Stable limit cycle in quadratic system.

419

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



3 The harmonic linearization method — describing function method
Consider a system

dx
dt

= Px+qϕ(r∗x), (1)

where P is a constant n×n-matrix, q and r are constant n-vectors, ϕ(σ) is a piecewise-continuous function, and ∗
is the operation of transposition.

When applied the harmonic linearization method [6] to this system, standard assumptions are the existence of a
pair of purely imaginary eigenvalues ±iω0(ω0 > 0) of the matrix P and a negativeness of the rest of eigenvalues.

By nonsingular linear transformation, under the above assumptions system (1) can be reduced to the form

ẋ1 = −ω0x2 +b1ϕ(x1 + c∗x3)
ẋ2 = ω0x1 +b2ϕ(x1 + c∗x3)
ẋ3 = Ax3 +bϕ(x1 + c∗x3).

(2)

Here A is a constant (n−2)× (n−2)-matrix, all eigenvalues of which have negative real parts, b and c are (n−2)-
dimensional vectors, b1 and b2 are certain numbers.

Combined application of the harmonic linearization method, the classical method of small parameter, and numerical
methods permit us to compute periodic oscillations of certain multistage procedure, where at the first step the
harmonic linearization method is applied.

In the basic, noncritical, case we suppose that the relation ϕ(σ) = εψ(σ), where ε is a small parameter, is satisfied.
In the sequel, without loss of generality, we can assume that for A there exists the number α > 0 such that

x∗3(A+A∗)x3 ≤−2α|x3|2, ∀x3 ∈ Rn−2.

We introduce the function

K(a) =

2π/ω0∫
0

ψ(cos(ω0t)a)cos(ω0t)dt.

Theorem 1. If the conditions

K(a) = 0, b1
dK(a)

da
< 0,

are satisfied, then for sufficiently small ε > 0 system (1) has T -periodic solution such that

r∗x(t) = acos(ω0t)+O(ε),
T = 2π

ω0
+O(ε).

This periodic solution is stable in the sense that there exists its certain ε-neighbourhood such that all solutions
with the initial data from this ε-neighbourhood remain in it in increasing time t.

The described in Theorem 1 "standard", basic, method of harmonic linearization turns out too rough to locate
periodic oscillations in nonlinear systems, satisfying the generalized Routh-Hurwitz conditions. The relevance of
such problem is stimulated by Aizerman’s conjecture [14, 16].

The extension of Theorem 1 in the spirit of classical research of critical cases in the theory of motion stability
makes it possible to obtain effective estimates for periodic oscillations in systems, satisfying the generalized Routh-
Hurwitz conditions.

Consider a class of the functions ϕ(σ) of the form

ϕ(σ) = μσ , ∀σ ∈ (−ε,ε),
ϕ(σ) = Mε3, ∀σ > ε,
ϕ(σ) = −Mε3, ∀σ < −ε,

(3)

where μ and M are certain positive numbers, ε is a small positive parameter.

Similar classes of functions were considered before in studying Aizerman’s conjecture [14, 16].

Theorem 2. If the inequalities b1 < 0, μb2(c∗b+b1)+b1ω0 > 0, are satisfied, then system (2) with nonlinearity
(3) has T -periodic solution with the initial data

x1(0) = O(ε2), x3(0) = O(ε2),

x2(0) = −
√
μ(μb2(c∗b+b1)+b1ω0)

3ω0M(−b1)
+O(ε).
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and
T =

2π
ω0

+O(ε).

The described in Theorems 1 and 2 periodic solution can be considered as certain "support" (basic) periodic
oscillations and system (1) with the considered above nonlinearities as "generating" start system in the algorithms
of seeking the periodic solutions of another system, namely

dx
dt

= P0x+q f (r∗x), (4)

In this case, we can organize a finite sequence of the functions ϕ j(σ) j = 1, . . . ,m, such that the graphs of each
pair ϕ j and ϕ j+1 are close to each other and ϕ1(σ) = ϕ(σ), ϕm(σ) = f (σ). Then, for the system

dx
dt

= Px+qϕ j(r∗x) (5)

with ϕ1(σ) = ϕ(σ) and small ε we take the periodic solution g1(t), described in either Theorem 1 or Theorem
2. Two cases occur: either all points of this periodic solution are situated in a domain of attraction of the stable
periodic solution g2(t) of system (5) with j = 2, or in passing from system (5) with j = 1 to system (5) with j = 2
we have a bifurcation of stability loss and a vanishing of periodic solution.

In the first case, we can numerically find g2(t) when the trajectory of system (5) with j = 2 begins at the initial
point x(0) = g1(0).

Starting from the point g1(0), after transient process the computational procedure outputs into the periodic solution
g2(t) and calculates it. For this purpose the interval [0,τ], on which the computation occurs, must be sufficiently
large.

After computation of g2(t) it is possible to go to the following system (5) with j = 3 and to organize a similar
procedure for computation of the periodic solution g3(t) when a trajectory, which in increasing t tends to the
periodic trajectory g3(t), starts from the initial point x(0) = g2(τ).

Proceeding then this procedure for sequential computing g j(t) and making use of trajectories of system (5) with
the initial data x(0) = g j−1(τ), we arrive by numerical computation of periodic solution of system (4) or observe,
at a certain step, a bifurcation of stability loss and a vanishing of periodic solution.

We give two examples of applying this procedure.

Example 1. Consider system (2) with the function ϕ(σ) = εψ(σ), ψ(σ) = k1σ + k3σ3. Then we have

K(a) = (k1a+
3

4
k3a3)

π
ω0

.

It follows that a can be determined from the equation K(a) = 0 in such way

a = a1 =

√
−4k1

3k3
,

and a stability condition takes the form −b1k1 < 0.

Let be k1 = −3,k3 = 4, ω0 = 1,b1 = −1,b2 = 1,A = −1,c = 1,b = 1. Then a1 = 1.

Using the classical harmonic linearization method [6], we obtain that for any ε > 0, system (2) has a periodic
solution and in this case σ(t) = r∗x(t) ≈ cos t.

By Theorem 1 for small ε > 0, system (2) has a periodic solution of the form

x1(t) = cos t +O(ε)
x2(t) = sin t +O(ε)
x3(t) = O(ε).

Further, using the above computational procedure, we obtain a periodic solution of system (2) for ϕ j(σ) =
ε jϕ(σ), ε1 = 0,1,ε2 = 0,3,ε3 = 0,6,ε4 = 0,7,ε5 = 0,9,ε6 = 1. In Figure 3 it is shown a projection of periodic
solution thus computed on the plane {x1,x2} when ε = 1. For these periodic solution the graph σ(t) = x1(t)+x3(t)
is represented. In this case for ε = 1, the output σ(t) is substantially not harmonic and the filter hypothesis is untrue.
Therefore, here it is impossible, in principle, to justify a standard harmonic linearization method, founding on the
filter hypothesis.
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Figure 3: ε = 1.

Example 2.

Consider system (2) with the function

W (p) =
p−1

p2 +1
+

1

p+1
.

Here r∗q = −1, ω0 = 1, b1 = −1, b2 = −1, A = −1, c = 1, b = −1.

If ϕ j(σ) = kσ then system (2) is stable for all k ∈ (0,+∞).

Let
ϕ j(σ) = μσ , ∀σ ∈ (−ε j,ε j),

ϕ j(σ) = Mε3
j , ∀σ > ε j,

ϕ j(σ) = −Mε3
j , ∀σ < −ε j.

Here μ = 2,M = 1 and ε j – positive parameters.

By theorem 2 initial conditions for periodic solution are the following

x1(0) = O(ε), x3(0) = O(ε), x2(0) = −
√

2

3
+O(ε).

Further, using the above computational procedure, we obtain a periodic solution of system (2) for ε1 = 0,1, ...,ε7 =
0,7. In Figure 4 it is shown a projection of periodic solution thus computed on the plane {x1,x2} when ε = 0.7.

−5 0 5
−4

−2

0

2

4

0 500 1000 1500
−4

−2

0

2

4
x1(t)+x2(t)

Figure 4: ε = 0.7.

For ε = 0.8 the periodic solution is destroyed.
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4 The circle criterion of nonexistence of periodic oscillations with a given
period for discrete systems

Consider a discrete system
x(t+1) = Px(t)+qϕ(t,r∗x(t)), (6)

x ∈ Rn, t ∈ Z.

Here q and r are constant n-dimensional vectors, P is a constant real n×n-matrix, ϕ(t,σ) is a scalar function,
satisfying on a certain set Ω⊂ R1 the following condition: for any t ∈ Z and σ ∈Ω\{0} the relation

k1σ2 < ϕ(t,σ)σ < k2σ2. (7)

is valid. If 0∈Ω, then we require additionally ϕ(·,0)=0.

Introduce the transfer function W : C → C of system (6):

W (p) = r∗(P− pI)−1q, p ∈ C. (8)

Theorem (the circle criterion). Suppose, for a certain natural N the following inequalities

Re
[(

1+k1W
(

e
2π j
N i

))∗(
1+k2W

(
e

2π j
N i

))]
≥ 0, (9)

∀ j = 0, . . . ,N −1

are satisfied.

Then there does not exist N-periodic sequence of the vectors x(t), which satisfies system (6) with the condition on
nonlinearity (7) and the inclusion

c∗x(t) ∈Ω, ∀t ∈ Z. (10)

The proof of this theorem is similar to the proof of Theorem 13.1 from [13] and is based on the properties of
discrete Fourier transformation.

We give two applications of the circle criterion.

Example 3. Logistic map

A discrete logistic equation is as follows

x(t+1) = μx(t)(1− x(t)), (11)

μ ∈ R+, x(0) ∈ (0;1).

For all t ≥ 2 we have the obvious restriction

x(t) ∈
[
μ2(4−μ)

16
;
μ
4

]
(12)

From (11) we obtain x(t+1) = μx(t) − μx(t)2. Make the change of variables: σ(t) = x(t)−a, where a = 1 − 1
μ .

Now the system takes the form

σ(t+1) = μσ(t)− [
μ(σ(t)+a)2 − (μ−1)a

]
(13)

This system has the form (6), where P = μ, q = −1,
r = 1,ϕ(t, σ)=ϕ(σ)=

[
μ(σ+a)2 − (μ−1)a

]
.

A transfer function of such system is as follows

W (p) =
1

p−μ ,

and restriction (12) becomes

σ(t) ∈
[
μ2(4−μ)

16
−a;

μ
4
−a

]
= [σmin; σmax]. (14)
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Note that ϕ(0) = 0, and the nonlinearity ϕ on the setΩ= [σmin;σmax] lies inside the sector bounded by two straight
lines: ξ = k1σ and ξ = k2σ , where

k1 =
ϕ(σmin)
σmin

, k2 =
ϕ(σmax)
σmax

.

For μ < 3, all trajectories of system (13) tend to a unique equilibrium. Now we consider μ ∈ (3, 4).

Consider a criterion for N = 3.

For j = 0, condition (9) is the inequality

(
1− k1

μ−1

)(
1− k2

μ−1

)
≥ 0,

which is satisfied for μ ∈ (2; 4).

For j = 1,2 inequalities (9) have the form

1+(k1 + k2)

(
− μ+ 1

2

μ2 +μ+1

)
+

+k1k2

(
1

μ2 +μ+1

)
≥ 0,

what is equivalent to the relation

μ2+μ+1− (k1+k2)
(
μ+

1

2

)
≥ 0

This inequality is satisfied for μ < 3.6395. Thus, we obtain that μ < 3.6395 the shifted logistic map, and
therefore, original logistic map cannot have a cycle of period 3. This estimation is close to parameter μ which
correspond to existence [13] of solutions with period 3: μ = 1+

√
8 = 3,8284.

Example 4. Henon map

Consider a Henon map with one real parameter{
x(t+1) = 1+ y(t)−ax(t)2

y(t+1) = 0.3x(t) (15)

From (15) we obtain
x(t+1) = 1+0.3x(t−1)−ax(t).

Having performed the changes u(t) = x(t)−Δ and letting v(t+1) = u(t), we obtain the new two-dimensional map{
u(t+1) = 0.3v(t)+1−0.7Δ−a(u(t)+Δ)2

v(t+1) = u(t)

The above system of "offset" Henon map is a system of the form (6) with

P =
(

0 0.3
1 0

)
, q =

( −1
0

)
, r =

(
1
0

)
,

ϕ(t,σ) = ϕ(σ) = a(σ +Δ)2 +0.7Δ−1,

σ = c∗(u,v)∗ = u.

Transfer function of above system is

W (p) =
p

p2 −0.3
.

Let, as in the previous example, N = 3. Substituting the values for circle criterion, we obtain

p0 = e
2π j

3 i = 1 =⇒ W (p0) =
10

7
;

p1,2 = e
2π j

3 i =⇒ W (p1,2) =
−35∓65

√
3i

139
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Find Δ from the conditions ϕ(Δ) = 0 and Δ > 0. Simple calculation gives

Δ=
√

49+400a−0.7

20a
.

Numerical modeling shows that for t → +∞ the number σ lies in the interval

σ ∈ (−1.1a−0.4, 0.1a+0.52) = (σmin, σmax)

0

0 1.426

Figure 5: Bifurcations diagram of offset Henon map and the considered restrictions of attractor.

The nonlinearity now can be collected in the sector:

Figure 6: Nonlinearity of offset Henon map.

Here

k1 =
ϕ(σmin)
σmin

= −1.1a2 −0.4a+
√

0.49+4a−0.7,

k2 =
ϕ(σmax)
σmax

= 0.1a2 +0.52a+
√

0.49+4a−0.7.

For these k1 and k2, find a for which the circle criterion is valid.

1) j = 0

W (p0) =
10

7
.

The inequality from the circle criterion becomes

Re[(1+
10

7
k1)(1+

10

7
k2)] ≥ 0,

what is equivalent to
(11a2 +4a−√

49+400a)·
·(a2 +5.2a+

√
49+400a) ≤ 0

The elementary analysis shows that this inequality is satisfied for a < 1.3.

2) j = 1,2

W (p1,2) =
−35∓65

√
3i

139
.
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Then (9) takes the form of the following inequality

1− 35

139
(k1 + k2)+

100

139
k1k2 ≥ 0,

which is satisfied for a < 1.129.

Thus, for a < 1.129 the shifted Henon map, and therefore, the original Henon map cannot have a cycle of period
3.

1.129 1.426

Figure 7: The obtained estimate on the bifurcational diagram of Henon map.

5 Feigenbaum effect for nonunimodal map
Discrete Phase-Locked Loops with sinusoidal characteristic of phase discriminator are described in details in [17].

In case of initial frequency of master and local generators coincidence equation is given by

σ(x+1) = σ(x)− r sin(σ(x)) (16)

where r is a positive number.

In the system (16) there is transition to chaos via the sequence of period doubling bifurcations.

Equation (16) is not unimodal map [3, 9, 23], so we can not apply the usual Renorm-Group method for its analytical
investigation. Some first bifurcation parameters can be calculated analytically [17], the others can be found only
by means of numerical calculations.

The first 13 calculated bifurcation parameters of period doubling bifurcation of (16)

r1 = 2 r2 = 3.141592653589790
r3 = 3.445229223301312 r4 = 3.512892457411257
r5 = 3.527525366711579 r6 = 3.530665376391086
r7 = 3.531338162105000 r8 = 3.531482265584890
r9 = 3.531513128976555 r10 = 3.531519739097210
r11 = 3.531521154835959 r12 = 3.531521458080261
r13 = 3.531521523045159

Here r2 is bifurcation of splitting global stable cycle of period 2 into two local stable cycles of period 2. The other
r j correspond to period doubling bifurcations.

We have here following Feigenbaum’s effects:

δ2 = (r2 − r1)/(r3 − r2) = 3.759733732581654

δ3 = r3−r2
r4−r3

= 4.487467584214882

δ4 = r4−r3
r5−r4

= 4.624045206680584

δ5 = r5−r4
r6−r5

= 4.660147831971297

δ6 = r6−r5
r7−r6

= 4.667176508904449

δ7 = r7−r6
r8−r7

= 4.668767988303247

δ8 = r8−r7
r9−r8

= 4.669074658227896
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δ9 = r9−r8
r10−r9

= 4.669111696537520

δ10 = r10−r9
r11−r10

= 4.669025736544542

δ11 = r11−r10
r12−r11

= 4.668640891299296

δ12 = r12−r11
r13−r12

= 4.667817727564633

So here we consider approximation of Feigenbaum’s constant for considered nonunimodal map.

6 Conclusion
Difficult problems on a search of periodic solutions stimulated a synthesis development of analytical-numerical
and numerical methods. Some of these directions are considered in the present paper.
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