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Abstract. Steady state multiplicity in continuous cell cultures is studied by means of two different
types of mathematical models. The first one is a simple cybernetic model, which accounts for intracel-
lular regulatory effects during growth on mixed substrates in a very simplified way. In contrast to this
the second model accounts for various regulatory effects in a very detailed way. Due to its simplicity
an analytical approach is possible for the simple cybernetic model. Explicit formulae are derived to
study the influence of the various parameters on the existence and the size of a multiplicity region. In
particular, it is shown that the cybernetic model always predicts multiplicity if the fraction of the pre-
ferred substrate in the feed is sufficiently low, no matter which particular substrate or micro-organism
is considered. It is further shown for growth of E. coli on mixed substrates of glucose-6-phosphate
and glucose, that the overall behavior predicted by the cybernetic model is agreeing qualitatively quite
well with the detailed model. Quantitative differences are also discussed and conclusions are drawn for
future work.

1 Introduction
Metabolic regulation is of fundamental importance for understanding the dynamic behavior of biological systems.
While it allows the microbial cells to survive under changing environmental conditions, it can be also the source
of intricate nonlinear behavior in biotechnological production processes. As a consequence of the interconnec-
tions between metabolism, signal transduction and gene expression, complex nonlinear behavior in the form of
steady state multiplicity and bistability may appear in continuous cultures. Depending on the initial conditions,
different asymptotic states can be attained with completely different amount of biomass and/or internal metabolite
concentrations. Hence suitable start-up strategies may be required to achieve an optimal production rate with high
cell density [2]. Suitable mathematical models can contribute to a better understanding and may guide the way to
suitable process conditions and operating strategies.

In the present paper, a model based analysis of steady state multiplicity in continuous cell cultures is presented for
two different types of models. The first type of model is based on the cybernetic approach, which was proposed
by Ramkrishna and co-workers and has been under continuous improvement (see [11] and references there). Cy-
bernetic models are models of moderate complexity, which take into account metabolic regulation by using some
cybernetic variables which control enzyme synthesis and activity in order to maximize the growth rate. Cybernetic
models were used for the nonlinear analysis of bioreactors in [9, 8, 7] and [10]. In particular it was shown, that the
experimental findings in [2] could be predicted theoretically with a cybernetic model [8].

The second model is a detailed mathematical model which was developed by Kremling and co workers and later
extended in series of papers (see Bettenbrock et al. (2006) [1] and references therein). The final version of the de-
tailed model used in the present contribution describes the growth of E. coli on a mixture of up to six carbon sources
and takes into account the regulation (activity as well as gene expression) of the uptake reactions. In particular,
the complete signal transduction pathway, starting from the sensory system, the carbohydrate phosphotransferase
systems (PTS) to the activation of the global transcription factor Crp is included.

2 Cybernetic model
Here, as a first step, the most simple cybernetic model according to Kompala et al. [5] is considered. The differ-
ential equations for the different substrate concentrations si, the corresponding enzyme concentrations ei and the
biomass c read

dsi

dt
= D(si f − si)−

riνic
Yi

(1)

dei

dt
= reiui −

(
∑
k

rkνk + βi

)
ei (2)
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dc
dt

=

(
∑
k

rkνk −D

)
c. (3)

Therein, si f are the substrate concentrations of the feed, βi are the degradation rate constants of the enzymes, Yi
are the yield coefficients, and D is the dilution rate.

The cybernetic variables ui and νi are given by

ui =
ri

∑
k

rk
, νi =

ri

maxk{rk}
. (4)

The growth rates ri and the enzyme synthesis rates rei are calculated using Monod type of kinetics

ri =
μieisi

ki + si
, rei =

αisi

kei + si
, (5)

where according to Kompala et al. [5] μiei replaces the traditional maximum specific growth rate μimax in the
Monod kinetics to bring out the influence of the specific enzyme levels on the growth kinetics.

In the remainder, the focus is on growth on a mixture of two substrates, i.e. i = 1,2. The preferred substrate, i.e.
the one with the larger individual growth rate, has always index ’1’.

At steady state Eqs. (1)-(3) can be rewritten as

0 = D(si f − si)−
riνic

Yi
(6)

0 = reiui − (D+ βi)ei (7)

0 = ∑
k

rkνk −D. (8)

It was shown by Namjoshi and Ramkrishna [9] that this set of equations admits multiple steady state solutions, i.e.
depending on the initial conditions (startup strategy) the system can reach different asymptotic values of the state
variables for the same set of final operating conditions.

Due to the non differentiability of the maximum function in Eq. (4) different combinatorial cases have to be
considered [9], namely

(A) e1 = 0,e2 �= 0,

(B) e1 �= 0,e2 = 0,

(C-1) e1,e2 �= 0,r1 ≥ r2,

(C-2) e1,e2 �= 0,r1 ≤ r2.

Cases (A) and (B) were treated analytically in [9], whereas for cases (C-1) and (C-2) an iterative solution procedure
was devised. In [10] a rigorous numerical bifurcation analysis was given to calculate the multiplicity region for cell
cultures of Klebsiella pneumonia growing on glucose and xylose. Main bifurcation parameters were the dilution
rate D and the feed composition γ = s1 f /(s1 f + s2 f ). The overall concentration of the substrate in the feed was
fixed according to s1 f + s2 f = 1g/l. Further, it was shown that solutions of type A and B will vanish if a more
detailed model with maintenance is considered. An example with three different steady state solutions of type C is
shown in Fig. 1.

In the present paper a new semi-analytical approach for cases C-1 and C-2 is presented. This provides useful
insight into the steady state solution structure of the cybernetic model and reveals some surprising features of this
type of model. Afterwards a quantitative comparison with a very detailed model is given.

2.1 Analytical treatment

In the first step, Eqs. (6)-(8) are reduced to a single nonlinear equation in r1 for case C-1 and r2 for case C-2. For
simplicity, the saturation constants of the growth rate ki and the enzyme synthesis rate kei are assumed to be equal
and hence

rei =
αiri

μiei
. (9)

However, it should be noted that the results and procedures presented subsequently can be readily extended to the
case ki �= kei.
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Figure 1: Steady state solutions of type C-1 and C-2 for a continuous culture of Klebsiella pneumonia with the parameters

of [10], and s1 f = 0.3,s2 f = 0.7.

For r1 ≥ r2 (case C-1) we have

ν1 = 1, ν2 = r2/r1. (10)

Upon substituting this into Eq. (8) we find

r2 =
√

r1(D− r1). (11)

From Eqs. (7) we find in view of Eq. (9)

ei =
Ciri√
r1 + r2

with Ci =

√
αiμi

D+ βi
. (12)

Following the model formulation in [10] and using

μi =
μimax

eimax
and eimax =

αi

βi + μimax
(13)

Ci can be rewritten as

Ci =

√
μimax(βi + μimax)

D+ βi
. (14)

From Eqs. (5) we find in view of Eq. (12)

si =
ki
√

r1 + r2

Ci −
√

r1 + r2
. (15)

Eliminating the biomass c from Eqs. (6) finally gives a single equation for r1

f (r1,si(r1,r2(r1))) := Y1(D− r1)(s1 f − s1)−Y2r1(s2 f − s2) = 0, (16)

where the substrate concentrations have to be replaced by Eq. (15) and r2 therein has to be replaced by Eq. (11).
Note, that an analytical solution of Eq. (16) is not possible. However, all possible solutions are easily constructed
graphically by intersecting the linear part of this equation

flin = Y1(D− r1)s1 f −Y2r1s2 f (17)

with its nonlinear counterpart

fnonlin = Y1(D− r1)s1 −Y2r1s2. (18)

An example with two solutions of type C-1 corresponding Fig, 1 is shown in Fig. 2.1a.
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Figure 2: Graphical construction of steady state solutions for the parameters given in [10] and D = 0.52, s1 f = 0.3,

s2 f = 0.7: (a) r1 ≥ r2, (b) r1 ≤ r2.

The vertical lines in Fig. 2.1a are the zeros of the denominator of the substrate concentrations in Eq. (15). For
feasibility we have to require in view of Eq. (11)

r1 > r2 > 0 ⇔ D/2 < r1 < D (19)

and

0 < si < si f . (20)

The feasible range is indicated by the shaded region in Fig. 2.1a. It follows directly from the curves si(r1)
calculated from Eqs. (15), (11) and also shown in Fig. 2.1a.

An analogous equation can be obtained for case C-2 with r2 ≥ r1 as a function of r2 by a change of the indices in
Eq. (16). The corresponding graphical construction for the parameters in Fig. 1 is shown in Fig. 2.1b.

The corresponding multiplicity regions in the parameter plane of the adjustable operating parameters D and γ can
be calculated numerically using a two parameter continuation for given kinetic parameters corresponding to a given
substrate and a given microorganism. The results for the model organism Klebsiella pneumonia corresponding to
Figs. 1, 2.1 are shown in Fig. 3.
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glucose glucose-6-phosphate

μimax 0.76 0.66
ki = kei 5e-03 5e-03

Yi 0.5 0.5
αi 1.e-03 1.e-03
βi 0.05 0.05

Table 1: Parameters of the simple cybernetic model for growth of E. coli on glucose-6-phosphate and glucose.

From the practical point of view, we are especially interested in the width of the multiplicity region as illustrated
in Fig. 3 and how this is influenced by the various other parameters of the model. In other words, we want to find
out how the multiplicity region will change for different substrates and/or different microorganisms.

Due to the simplicity of the cybernetic model an analytical approach is possible. The right boundary of the multi-
plicity region in Fig. 3 corresponds to the so-called catch up point (see also Fig. 1) where

r1 = r2 = D/2 and hence u =
√

r1 + r2 =
√

D. (21)

This boundary coincides with the wash out of substrate ’2’ for γ → 0 (vanishing concentration of substrate ’1’).
The value of the dilution rate D at this point follows from Eq. (15) for substrate ’2’

s2 = s2 f =
k2u

C2 −u
(22)

which is approximately D = μ2max if the enzyme degradation rate constant β2 is small in Eq. (14).

The left boundary is the turning point for r1 ≥ r2 (see also Fig. 1), which follows from Eq. (16) and the corre-
sponding singularity condition according to

f (r1,si(r1,r2(r1))) =
d f
dr1

(r1,si(r1,r2(r1))) = 0 (23)

For γ → 0 we have s1 f ,s1 → 0 and hence r1 → 0. Since, by definition, r1 ≥ r2 it follows that r2 also has to be equal
to zero and hence s2 = s2 f . Further, we find that the derivative in Eq. (23) will vanish for γ → 0 if and only if

d
dr1

(√
r1 + r2(r1)

)
= 0 (24)

which yields

u =
√

r1 + r2(r1) =

√
1 +

√
2

2
D ≈ 1.1

√
D (25)

With this, the value of the dilution rate D at the critical point follows again from Eq. (22). It is approximately
D = μ2max/1.1, if the enzyme degradation rate constant β2 is small.

In summary we find, that multiplicity is predicted by the simple cybernetic model for any substrate combi-
nation and any microorganism. The width of the multiplicity region close to γ = 0 is always about 10 % of
the maximum growth rate of the less preferred substrate ’2’. This result was checked numerically for various
parameter combinations.

Remark: This calculation refers to the light shaded region in Fig. 3 with three different steady state solutions of
type C. Additional solutions and singularities arise for the dark shaded region for r2 ≥ r1 and s2 �= s2 f . These are
mainly due to single substrate effects and are therefore of minor interest for the mixed substrate case considered
here.

In view of the subsequent discussion, a second example for the growth of E. coli on mixed substrates of glucose-
6-phosphate (preferred substrate) and glucose is illustrated in Fig. 4. The parameters of the cybernetic model for
this case are summarized in Table 1. The yield coefficients were taken from the detailed model to be described
subsequently. For the α’s and β ’s some standard values were applied, since these parameters have not much effect
on the biomass and the substrate concentrations but only on the relative enzyme levels. The growth rate constant
were fitted to experimental data from batch experiments.
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Figure 4: Bifurcation diagram for a continuous culture of E. coli growing on glucose-6-phosphate (preferred substrate
’1’) and glucose (substrate ’2’) with feed concentrations s1 f = 0.52 g/l, s2 f = 3.24 g/l. Results for the simple cybernetic

model with parameters from Table 1.

3 Detailed model
Next, a very detailed model for the growth of E. coli on mixed substrates, which was introduced in [1] is discussed.
The original model describes uptake, metabolism, gene expression and signal transduction of E. coli during growth
on five carbohydrates (glucose, lactose, glycerol, galactose, sucrose), see Figure 5. For the present paper it has
been extended to also account for glucose-6-phosphate substrate in the medium. The model is structured in such
a way that pathways well known from biochemical text books are represented as modules: Glycolysis represents
the central pathway where all the individual carbohydrates enter. The fluxes from the glycolysis into the TCA and
to the monomers are lumped into a single reaction.

The pathways for the individual carbohydrates include also a description of protein synthesis. Gene expression is
considered on different levels. The individual modules include a description of the specific control by a repressor
(“regulon level”). In general, repressors like LacI have a small number of binding sites on the genome. Further-
more, all pathways considered in the model are under control of the global transcription factor Crp (“modulon
level”). To calculate the influence of the two transcription factors, a method introduced in [6] was applied. The
method defines a hierarchy where the signal is transduced from the upper level, here the modulon level to the
regulon level, but not vice versa.

The signal transduction pathway leading to the activation of Crp represents a further module of the system. It
consists of the phosphotransferase system (PTS), the synthesis of cAMP by adenylate cyclase (enzyme Cya) and
the binding of cAMP to Crp. Cya as well as Crp are under control of the cAMP·Crp complex as well. The PTS is
a sensory and an uptake system at the same time. It consists of two common cytoplasmatic proteins, EI (enzymeI)
and HPr (histidine containing protein), as well as of an array of carbohydrate-specific EII (enzymeII) complexes.
The PTS is connected to glycolysis via PEP and pyruvate. Since all components of the PTS, depending on their
phosphorylation status, can interact with various key regulator proteins, the output of the PTS is represented by the
degree of phosphorylation of the proteins. Protein EIIA in its phosphorylated state is able to activate Cya and in
this way, cAMP is synthesized.
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Figure 5: Rough scheme of the Bettenbrock model. Shown are the individual uptake systems for lactose, glucose,
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To simulate the dynamics of cellular systems it is desirable to determine kinetic parameters from experimental
data. Since in most cases a direct measurement is not possible, the parameters are estimated during a parameter
identification procedure [1]. This comprises the check of identifiability and the estimation of the parameters. With
the Bettenbrock model [1], kinetic parameters for a detailed dynamic model of carbohydrate uptake were estimated.
Model predictions were verified by measuring time courses of several extra- and intracellular components such as
glycolytic intermediates (in a pulse experiment), EIIA phosphorylation level, both LacZ and PtsG concentrations
and total cAMP concentrations under various growth conditions. The entire database consists of 18 experiments
performed with 9 different strains (wild type and mutant strains). The model describes expression of 17 key
enzymes, 38 enzymatic reactions and the dynamic behavior of more than 50 metabolites. Based on the experiments
and with help of the ProMoT/Diva environment [3] with highly sophisticated methods for sensitivity analysis,
parameter analysis and parameter estimation, 50 parameters (34 %) could be estimated. Especially the analysis
of mutant strains offers the possibility to check if the control structures are reproduced well. In addition, pulse
experiments, “disturbed” batch experiments and continuous culture allow to determine and analyze the dynamics
in different time windows.

For comparison with the simple cybernetic model, a bifurcation diagram was calculated for the growth on a mixture
of glucose-6-phosphate and glucose for the conditions corresponding to Fig. 4 from the previous section. The
result is shown in Fig. 6. It turned out that a direct continuation of steady state solutions was not possible with the
available algorithms due to numerical problems that arise from the various scales included in this model. Instead,
dynamic simulation was used to trace out the branches of stable steady state solutions by changing the dilution
rate step by step. The black curve with plus signs corresponds to a step by step increase of the dilution rate. The
blue curve with circles corresponds to a step by step decrease of the dilution rate. In the figures sharp transitions
occur from the low biomass production branch to the high biomass production branch with strong hysteresis. This
behavior is qualitatively very similar to the behavior predicted by the simple cybernetic model shown in Fig. 4.
However, the range of hysteresis predicted by the detailed model is much larger: about 50 % of μ2max compared
to about 10 % of μ2max for the simple cybernetic model. The intermediate unstable steady states represent the
separatrix between the domains of attraction of the stable steady states. They, however, could not be calculated for
the detailed model with the computational procedure applied in Fig. 6.
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Figure 6: Bifurcation diagram for a continuous culture of E. coli growing on a mixed substrate of glucose-6-phosphate

(preferred substrate ’1’) and glucose (substrate ’2’) with feed concentrations s1 f = 0.52 g/l, s2 f = 3.24 g/l. Results for
the detailed model.

4 Conclusions
In this paper a model based analysis of steady state multiplicity in continuous cell cultures was presented for two
different types of models. The first is a simple cybernetic model, which accounts for regulatory effects during
growth on mixed substrates with a very simplified approach. In contrast, the second model accounts for various
regulatory effects in a very detailed way. Due to its simplicity an analytical approach was possible for the cy-
bernetic model. In particular, the extension of the multiplicity region and its dependency on the various model
parameters was studied. The analysis reveals, that the cybernetic model always predicts multiplicity if the fraction
of the preferred substrate in the feed is sufficiently low, no matter which particular substrate or micro-organism
is considered. It was further shown that the overall behavior predicted by the cybernetic model was agreeing
qualitatively quite well with the detailed model for growth of E. coli on mixed substrates of glucose-6-phosphate
and glucose. However, the size of the multiplicity region predicted by the detailed model was much larger. To
overcome this deficiency, the use of more advanced cybernetic models as proposed recently by Ramkrishna and
co-workers [11, 4] is recommended.

Experimental validation of the theoretical findings is in progress.
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