
Free Analytical Vibrations of Smart Beams using Distributed 

Transfer Function Analysis
    

Mohammed A. Al-Ajmi

Mechanical Engineering Department, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait 

E-mail: malajmi@kuc01.kuniv.edu.kw

Introduction. The modal Effective Electromechanical Coupling Coefficient (EMCC) is known 

as a critical parameter in justifying the performance of piezoelectric materials since it describes 

the efficiency of converting mechanical strain to electric charges and vice versa. For a vibrating 

structure, the EMCC is defined by [1] 
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Where 
ocH and

scH are the natural frequencies of the structure under the open-circuit (OC) and 

short-circuit (SC) boundary conditions for the rth mode. The cantilever beam under 

consideration, Figure 1, assumes no losses and perfect bonding between the piezoelectric layer 

and the host elastic beam. 

Equations of Motion. Consider a thin elastic beam divided into three regions as shown in Figure 

2. The first and last regions are made only of an elastic material while the second one additionally 

contains a piezoelectric layer completely covering the elastic one. The Euler-Bernoulli in-plane 

strain is given by  

1 x xxu zw9 � 	 � � � � � �       (2) 

Figure 1. Smart cantilever beam 

Figure 2. Beam segmentation 
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Where u and w are the in-plane and transverse deformation, respectively. The constitutive 

equations for the piezoelectric beam are 
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Where / , E and D denote, respectively, the stress, electric field and electric displacement while, 

e, EC and 9
 stand for the piezoelectric, elastic, and dielectric constants. Applying Hamilton’s 

principle on the second region results in the following set of mechanical equations 
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With E , A and I denoting the density, cross section area and moment of inertia about the 

neutral axis, respectively. Also, subscripts b and p represent quantities for the beam layer 

and the piezoelectric layer, respectively. The third resulting electromechanical equation 

states that 
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Where V is the potential difference of the piezoelectric electrodes, q is a point charge on 

the piezoelectric surface
 , and =  is the distance from the neutral axis of the two layers 

to the mid-plane of the piezoelectric layer. The resulting boundary conditions of the 

piezoelectric layer at x1 or x2  are 

31 / 0x p pku e A V t� � � 78� u�9�:�

31 / 0xx p pdw e A V t=	 �  or wx = 0        (6) 

0xxxdw �  or w = 0

Which represent the essential and natural boundary conditions required for applying the 

displacement and force continuity between the three regions. 

Distributed Transfer Function. The equations of motion are first transformed to the Laplace 

domain. The transformed equations are cast into a state space form where the state vector is made 

of the deformation vector D(x,s), and the strain vector P(x,s) as follows [2,3] 
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The state space form is then given by 
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with m1 = m3 = m, m2 = mb, k1 = k3 = k, k2 = kb, d1 = d3 = d, d2 = db

The essential displacement continuity conditions are cast in the following matrix equations 
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Similarly, the force continuity conditions are shown to be 
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The solution of the state space equation for each region is given by [3]
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At the common interfaces between the three regions, the following equations hold true 

Y1 (x1,s) = Y2 (x1,s) , Y2 (x2,s) = Y2 (x2,s)       (13) 

substituting equation (11) in the last one eliminates Qi  (i = 1,2,3) and the result is the 

dynamic matrix equation of motion 
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Electrical Boundary Conditions. The electrical boundary condition for the SC condition is 

V = 0 and this reduces equation (13) to 

2( ) ( ) 0K s s> �             (16) 

In OC condition, the total surface charge qd




�  vanishes which reduces equation (5) to  
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As a result, the last equation is substituted back in (13) resulting in  
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The SC and OC frequencies are the values that force the determinant of the dynamic transfer 

matrix to vanish in both cases. Noting that  - � ;< ( ; � =>? ), the characteristics equations for 

the SC and OC conditions can be written, respectively, as  

5 6det ( ) 0K jH � , det ( ) 0K j BH� �� �� �         (19)

Results. Preliminary results have shown that the natural frequencies obtained by the current DTF 

method exactly match the ones obtained by the classical differential equation solution.

Conclusion. Unlike the classical boundary value problem approaches which get complicated for 

complex systems, the current modeling approach is systematically simple and requires no 

previous assumption of the solution type. Noting that the definition of EMCC is very 

sensitive to frequency predictions, the DTF method under consideration is of special interest in 

the design of smart structures since the exact frequencies can be easily calculated, leading to 

exact determination of the modal EMCC.
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