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Abstract. Mechanical behaviour of a structure, consisting of rigid and soft layers, is considered by 

replacing the real structure with an equivalent uniform continuum. A brief representation of con-

tinuum models describing deformation of layered media, as well as some generalizations, is pre-

sented. The continuum models are compiled into three groups: classical models of effective elastic 

medium, models additionally accounting for bending of layers, and models suggesting that the 

bending prevails. As an example the problem of layered structure bending is addressed. The results 

obtained by various continuum models are compared with the results of direct FEM simulation ac-

counting for individual layers. The FEM code, built for this purpose, incorporating various contin-

uum media models and various types of elements is used. Estimation of applicability ranges for 

various continuum models is made. It is shown that disregarding the influence of layers bending 

can lead to significant errors. An example, deformation of a graphite plate, is considered. 

1 Introduction. State of problem and research goals 
For material consisting of a large number of layers the continuum approximation approach seems appropriate to 

describe its mechanical behaviour. In the framework of this approach the real structured media are replaced with 

a homogeneous continuum possessing some effective properties. In case of the perfect cohesion of layers such an 

equivalent homogeneous medium is just an anisotropic elastic one. The general solution of the problem of the 

effective elastic characteristics determination for such a medium is well known as obtained by Lifshitz and 

Rozentsveig [1]. However, if the medium allows relative sliding of the layers, then within the layers bending 

may occur at the places of significant stress gradients. The bending is accompanied by such effects as the viola-

tion of the shear stress parity rule and appearing of the moment stresses. A similar situation may take place even 

in the case of perfect cohesion between the layers, if one group of the layers is sufficiently compliant to be con-

sidered as slippery interfaces. The peculiarity distinguishing these cases from the anisotropic elasticity is the 

presence of the additional degree of freedom, associated with the relative movement of the layers. Various vari-

ants of models accounting for this effect were suggested by many researches starting with the pioneer work [2]. 

Some modifications and generalizations are suggested by the authors. 

In the present work an example of multilayered plate deformation is considered in order to ascertain the range of 

parameters for which various types of continuum models are applicable. 

2 Continuum models. Variational approach 
Various types of continuum models were derived using a variational principle as follows. At the fine scale (of 

the order of layer thickness) a set of independent kinematic variables, such as displacements, are introduced and 

approximated by some set of parameters. Then using a variational principle the corresponding potential (energy) 

is derived in terms of the introduced independent variables. The equations of motion (equilibrium) and natural 

boundary conditions are obtained from this potential by the standard variation procedure. In the classical contin-

uum mechanics, due to the assumption that there exists a limit of the energy of the medium at decreasing the 

volume element down to zero, the influence of high-order derivatives of independent field vanishes. For the 

structured media, such as layered media in question, this assumption is omitted (the representative volume ele-

ment may not be less then element of the structure), and the set of the parameters, introduced to characterize the 

field within the volume element may include high-order derivatives of independent field and the additional de-

grees of freedom of the model.  

Let us consider an application of the variational approach to obtaining a continuum model of layered media. 

Consider an area of the media possessing a cubic lattice structure and introduce the volume element ΔV, which is 

small comparing to the area dimensions, but not less then the size of the lattice structure. The undeformed ele-

ment is shown in Fig.1. For simplicity, we restrict ourselves with 2-D case. 

Generally, two types of deformation may be distinguished: the deformation of the lattice (Fig.2a) where the 

particles neighbouring before deformation remains neighbouring after deformation; and the relative movements 

of the neighbouring particles (Fig.2b). The first type of deformation will be called the elastic deformation, while 
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the second one will be referred to as the quasiplastic deformation. The term “plastic” is used in this particular 

meaning, rather then implying energy dissipation.  

Figure 1. Undeformed element 

a) b) 

Figure 2. a) Homogeneous elastic distortion;   b) Homogeneous quasiplastic distortion 

Geometry of the deformed body may be described by the tensor of elastic distortion ββββ, with Cartesian compo-

nents ijβ , and the components 
P

ijβ  of quasiplastic distortion. Geometries, corresponding to various compo-

nents of elastic and plastic distortion, are shown in Fig.2a and Fig.2b. The sum of the elastic and plastic distor-

tion is denoted the total distortion 

j,i

T T P

ij ij ijUβ ≡ = β + β (1) 

Here U is the Cartesian displacement. Consider layered media with 2x -axis being normal to the layers. Such 

media may deform and relative sliding of the layers may occur, but not their separation. Hence, the only nonvan-

ishing component of quasiplastic distortion is P P T

21
β = β = β − β . 

In the framework of the classical mechanics of microstructured media [3], the energy density is supposed to be a 

function of total and plastic distortion and gradient of the elastic distortion. However, due to Eqv. (1), without 

loss of generality we may write it as a function of elastic and plastic distortion and the corresponding gradient 

( )P

ij ij ij,kW W , ,= β β β (2) 

A particular expression for the potential of Eqv.(2) may be written in various ways. Thus, according to [4] (simi-

lar models were considered in [5-10]) it has the form 

( )2
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The layers are assumed isotropic, λ  and μ  being Lame constants, 2h being the layer thickness. It is assumed 

that interlayer sliding is determined by the Wienkler-type law with the constant k. Here its first two terms corre-

spond to tension and compression along and normally to layers, the third term corresponds to the shear within 

the layers, the forth correspond to the shear between the layers, the fifth correspond to bending. The standard 

procedure of variation of Eqv.(3) leads to equations of equilibrium and natural boundary conditions. 

Using such a procedure various types of continuum models, both known and new, depending on particular type 

of Eqv.(2), were obtained, which we divide into three groups: classical models of effective elastic media  (classi-

cal model, CM) [1], models of types [4-12] accounting for additionally bending of layers (universal models, 

UM), and models of types [13-14] supposing that bending prevails (bending models, BM). Also, some generali-

zations of the models were made [15]. 

In order to test the applicability of the continuum models and finding the ranges of their applicability the prob-

lem of deformation of the layered structure was addressed. 

3 FEM modelling 
The FEM code was built incorporating various continuum models and various types of elements, namely: 3-

point simplex element, 6-point element, 3-point element with conjugated gradients. The last type of element 

seems to be used for the first time for the problems of such a kind (FEM modeling of the deformation of layered 

structure were made by [9, 10]).  

To test the applicability of the continuum models and finding the ranges of their applicability the problem of 

deformation of the layered structure was addressed. Rectilinear area of the length L=340 and height H=31.5 

consisting in 9 pairs of layers of thickness 3.5 were loaded along its long side with the pressure p=1, lateral sides 

were clamped; the interface was modeled by very thin (thickness being 0.01) soft layers. The other parameters 

are 1λ = μ =  k =10
-5

 ÷ 10
2
. All values of parameters are dimensionless. The result of FEM modeling using 3-

point element with conjugated gradients are given in Fig.3 for the 300 element mesh (Fig.4). Calculations were 

also performed using meshes with 480, 700, 1400, 2800 elements. The results obtained by various continuum 

models using FEM simulation and simplified Ritz method were compared with the results of direct FEM simula-

tion accounting for individual layers (three rows of elements of a same material properties for each layer, totally 

10800 elements). 
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Figure 3. Results of calculation of maximal vertical displacement of the central point of the layered plate according to 

various models 

Figure 4. FEM net used for calculation 

4 Main results and conclusions 
For the addressed problem the ranges of applicability of three groups of models (CM, UM, BM) were obtained. 

They were determined by the parameter, characterizing relative rigidity of the layers k (see Fig.3). It was shown 
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that CM is applicable for high and moderate relative rigidity of the soft layers (values of 
210k −≥ ); BM is ap-

plicable for extremely low relative rigidity of the soft layers (values of 
4 510 10k − −≤ ÷ );  UM is applicable for 

any value of rigidity of the soft layers. The results obtained by various variants of UM are very close to each 

other not allowing choosing the best of them. 

The results obtained with the simplified Ritz method were also in a very good agreement with the direct FEM 

modeling. However the direct application of this approach is restricted with very simple geometries. 

The comparison of various types of finite elements leads to the following conclusions. Using 3-point simplex 

element is inappropriate for these kinds of models, because it requires too many elements (comparable to the 

number of elements in direct modeling) for the good convergence to the exact solution. 6-point elements and 3-

point element with conjugated gradients yield good convergence. Therefore, UM models yield good results with 

finite elements of high order (6-point element, 3-point element with conjugated gradients), which nevertheless 

gives an advantage in computing time. 

An example of a graphite plate deformation is considered. It was shown that calculating deformations of small 

plates using CM could yield errors, and thus UM are preferable. 

The work was supported by the Program of Fundamental Research of Presidium of the RAS N11. 
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