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Abstract.  Engineers are relying more and more on simulation to accelerate development processes.  
Combining computer simulation with Model-Based Design techniques enables engineers to not only 
complete tasks in a shorter period of time, it makes it possible to find design errors before building 
hardware, making the errors easier and less expensive to fix.[1]   As the systems they develop require 
integrating control systems with physical systems spanning multiple physical domains (mechanical, 
electrical, etc.), a useful model of the physical system (plant) is critical for developing an optimized 
system.  Traditional methods (C, FORTRAN, etc.) and signal-based or input-output (causal) methods in 
graphical software tools (Simulink, etc.) were useful for control engineers because they were written in a 
language they could easily understand and integrate with their control system models.  However, these 
models can be difficult to reuse, leading to redundant work.  A technique which has been applied to 
electrical systems for quite some time is now being used on multidomain physical systems.  The physical 
network approach, often referred to as acausal modeling, enables engineers to create reusable models of 
physical components that can span multiple physical domains.  Simulation tools that support this method 
(Simscape, etc.) then build up the equations for the system and solve the differential algebraic equations 
directly, resulting in accurate simulations of the entire system.  This paper focuses on the physical 
network technique for modeling physical systems and its use in Simscape within the Simulink 
environment. 

1 The need for an additional modeling methods 
Input-output methods (also known as causal modeling) have been used to model physical systems for quite 
some time[2].  One of the main reasons this method is used is because it is the natural language of control 
engineers.  In a standard control loop, the plant is represented as a transfer function with an input and an output.  
Finding a mathematical representation composed of blocks with inputs and outputs fits naturally into this 
system, and is easy for a control engineer to use and understand.   

 
Figure 1. Diagram representing typical control loop structure.  The plant, or physical system, is often modeled using the 

input-output method because it fits well into this structure. 

Another reason is the use of data-driven modeling.  Techniques that use system identification theory take 
measurement data and produce a transfer function that reproduces the behavior of the system.  Because it is 
based on measurement data, these models can be very accurate for behavior about a specific operating point and 
can execute very quickly.  These types of models typically (but not always) execute very quickly because the 
modeler has specified the exact calculations that the solver must complete. 
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Figure 2. Diagram of a          Figure 3. Implementation of equations in Simulink, 
DC Motor and equations                demonstrating input-output modeling method. 

However, while this method works very well for control systems, it has some disadvantages when modeling 
physical systems.  Physical systems are often expressed in the form of DAEs, which are composed of sets of 
equations that must be solved simultaneously.  This type of system can only be approximated using an 
input/output modeling technique.  Another disadvantage is that the models that are created depend upon which 
elements they are connected to.  It is necessary to know which inputs are available and which outputs must be 
calculated in order to connect it with the rest of the system.  This type of model is difficult to reuse in other 
models or applications, for it requires that the other components in the system are modeled in the same manner.  
This becomes especially complex when modeling components that cross multiple physical domains, like a DC 
motor or a hydraulic cylinder.  In this case, the model is dependent upon multiple other components that may 
have been modeled by different engineers, restricting the options of implementing the equations and therefore 
limiting the chances of reusing the model in other applications. 

Due to these reasons, engineers began looking for a better method for modeling these types of systems.  For 
purely electrical systems, Kirchoff’s laws have been used for quite a long time to express the equations for a 
entire system by applying a few basic mathematical rules to a network of electrical components represented by 
their individual mathematical models[3].  For example, the component model of a resistor was represented by 
v=iR, and this component model of an ideal resistor was identical for all resistors in the electrical network, 
independent of where the resistors were placed in the circuit.  The equations for the entire system could be 
derived by applying Kirchoff’s laws at the nodes of the electrical circuit.  This method permits the component 
models to be modular and reusable while also being able to mathematically represent an entire circuit.  Physical 
modeling languages focused on electrical systems have been in existence for quite some time (VHDL-AMS, 
VerilogA, etc.)[4]. 

It was seen that other physical domains were analogous to electrical networks, and that similar rules could be 
applied to systems composed of one or more other physical domains.  With this came the rise of other physical 
modeling languages such as Simscape[5], Modelica[6], 20Sim, and others that wished to provide for 
multidomain physical systems the same benefits that Kirchoff’s laws provided for electrical systems.  Using this 
method, an engineer could build up a library of component models that could be reused in a variety of models in 
a variety of applications.  When used in a modeling environment that also permits input/output modeling 
methods, it enables engineers to model the entire system with each component (physical or control element) 
modeled in a language natural for that domain.  When combined with tools for generating C code, the engineer 
then has the power to apply the Model-Based Design process from the advanced development all the way 
through production code generation, which is a must for engineers doing control system development. 
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Figure 4. Diagram of a DC Motor         Figure 5. Implementation of a DC motor model 
  with connections that match with            using the physical network method in Simscape. 
    the physical network method. 

2 Basics of the physical network method 
The basics of the network method requires describing the physical components in the system using variables 
particular to the domain that are analogous to voltage and current for electrical systems.  These variables can be 
determined by examining the flows of energy into and out of the component.  For example, if we look at a DC 
motor, the component (in its most basic form) involves two physical domains – electrical and mechanical. 

The electrical power can be represented as: 

 P = v i  

The mechanical power entering or exiting the component can be expressed as: 

 P = T ω  

The variables used in these equations are analogous to each other.  Understanding the relationship between the 
variables in these domains makes it possible to apply constraints to this system for each domain in order to 
develop the equations for the system.   

 
Figure 6. Diagram of DC Motor                Figure 7. Equation representing            Figure 8. Diagram of 

             showing physical network variables                energy flowing in and out    physical network element 
                                                                                           of  the motor     with across and through  
                                                                                                         variables labeled 

Kirchoff’s voltage law states that the directed sum of the electrical potential differences around any closed 
circuit must be zero.  Stated in a different way, this implies that the voltage of all components’ ports attached to 
an electrical node must be the same.  This can be related other physical domains.  For a hydraulic node, the 
pressure at all of the components’ ports attached to that node must be the same.  In our example of a DC motor, 
the velocity at all of the components‘ ports attached to a mechanical node must be the same.  These variables 
(pressure, velocity) are analogous to voltage in an electrical circuit, and in physical networks they are often 
referred to as across variables. 

Kirchoff’s current law states that the sum of currents flowing towards an electrical node is equal to the sum of 
currents flowing away from that node.  This can be related to other physical domains as well.  At a hydraulic 
node, the amount of fluid flowing into that node must be equal to the amount of fluid flowing out of that node.  
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This constraint must be applied to all components’ ports attached to that hydraulic node.  Similarly, for a 
mechanical node, the forces (or torques) applied in one direction at a node minus the forces (or torques) applied 
in the opposite direction at that node must be equal to zero.  These variables (flow rate, force/torque) are 
analogous to current in an electrical circuit, and in physical networks they are often referred to as through 
variables. 

 
Figure 9. Diagram representing two nodes of a physical network representation.   

Applying Kirchoff’s laws to these nodes allows the software to determine the equations for the entire system. 

Expressing the mathematical model for a component in terms of these variables makes it possible to formulate 
the equations for the entire system by applying the above laws as constraints to each node.  The fact that this 
analogy can be applied to each physical domain enables engineers to create components spanning multiple 
physical domains quite easily. 

3 Implementing Physical Networks in the Simscape Language 
A basic understanding of physical networks makes it easy to understand how such models can be created.  
Looking at a specific implementation of this technique makes it easy to see how this theory can be applied to 
actual engineering problems.  We will look at a model of a DC motor implemented in the Simscape language in 
order to see one concrete example of the physical network method for modeling physical systems. 

In the case of the DC motor, we have definitions of two physical domains – mechanical and electrical.  For each 
of those domains, we need to define the across and through variables, including their units.  Those definitions, 
implemented in the Simscape language, is shown below. 

 

 

 

 

 

 

      
     Figure 10. Declaration of the electrical                 Figure 11. Declaration of the rotational 
         domain in the Simscape language                                  mechanical domain in the Simscape language 

The component definition will need to make use of these variables in order to define the equations.  It will also 
have to define the relationship between these variables and the ports (the connections to the nodes) in order for 
the tool to be able to properly apply the constraints.  In addition, other internal variables may be needed for the 
equations.  The definition for the ports, which references these domain definitions, is shown here: 

  

domain electrical 
 
  variables 
    v = { 1 , 'V' }; 
  end 
  
  throughs 
    i = { 1 , 'A' }; 
  end 
  
end 

domain rotational 
 
  variables 
    w = { 1 , 'rad/s' }; 
  end 

  
  throughs 
    t = { 1 , 'N*m' }; 
  end 

  
end 
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Figure 12. Declaration of the electrical and mechanical ports of a DC motor in the Simscape language 

With these port definitions, the relationship between the ports and the across and through variables is expressed 
in the Simscape language as shown below: 

 
 
 
 
 
 
 
 
 
 

Figure 13. Setup section of Simscape component file, containing the declaration of the relationship between the variables 
and nodes in the Simscape language.  This section also leverages MATLAB functions to check a parameter value and inform 

the user if it is out of range. 
 
Useful models of physical components will have parameters that correspond to physical quantities, ideally the 
kinds of quantities that will be found on industry data sheets.  These parameters should also be defined in the 
component definition file so that they can be integrated with the component equations.  The parameters of a DC 
motor implemented in the Simscape language are shown below: 

 
 
 
 
 
 
 
 
 

Figure 14. Declaration of the component parameters for a DC Motor  in the Simscape language 

In each case, the units for the parameter are defined along with a realistic default value, in order to provide the 
user a realistic starting point. 

Implementing the equations is obviously a critical part of defining the component.  As has been explained, in 
order to be reusable the equations need to be expressed as a mathematical relationships that are valid for the 
component and are independent of what other components it is connected to.  And, in order to be able to 
properly express DAEs, these expressions must be able to represent simultaneous sets of equations and not 
simply input/output relationships or assignment.  In the Simscape language, the operator “==” is used to 
represent a mathematical relationship that is not based on assignment.  The equations for a DC motor based on 
the through and across variables defined above are shown below: 

  

parameters 
  Kt = {0.0637 'N*m/A'}; % Torque constant 
  Ke = {0.0637 'V/(rad/s)'}; % Back EMF Constant 
  Rwind = {0.048 'Ohm'}; % Winding Resistance 
  Lwind = {1600e-6 'H'}; % Winding Inductance 
  J = {0 'g*cm^2'}; % Motor Inertia 
  B = {1e-8 'N*m/(rad/s)'}; % Motor Damping 
end 

nodes 
  p = foundation.electrical.electrical; % +:right  
  n = foundation.electrical.electrical; % -:left  
  R = foundation.mechanical.rotational.rotational; % R:right 
  C = foundation.mechanical.rotational.rotational; % C:left  
end  

function setup 
  through( tq, R.t, C.t ); % through variable tq from r to c 
  across( w, R.w, C.w ); % across variable w from r to c 
  through( i, p.i, n.i ); % through variable i from p to n 
  across( v, p.v, n.v ); % across variable v from p to n 
  if Rwind <= 0 
    error('Resistance must be greater than zero') 
  end 
end 
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Figure 15. Declaration of component equations for a DC Motor in the Simscape language 

These mathematical relationships are evaluated simultaneously at each step of the simulation.  The techniques 
used to formulate the equations for the system is explained in the following section.  

4 Simscape Simulations 
The process of converting the physical network diagram into a set of DAEs that can be integrated is shown in 
the diagram below:   
 

 
Figure 16. Flowchart describing the steps of converting a physical network diagram into system equations. 

Once the physical network diagram is constructed in the diagram editor, the first step Simscape must do is to 
analyze the components in the network and their connections in order to convert it into what is known as a 
structural model.  The structural model is the framework of the physical network.  The equations, parameters, 
and initialization for the components is added to this framework to create a behavioral model of the system.  The 
behavioral model represents the set of DAEs symbolically at the equation level and has all of the information 
necessary to describe the system. Further steps are necessary to ensure a robust and quick simulation. 

The system of equations contained in the behavioral model are analyzed and reduced via symbolic 
simplification methods.  The index of the system of equations is reduced after all possible simplifications have 
been made.  This is done by first identifying the higher index constraint equations and then differentiating these 
equations in time. With this technique, Simscape can reduce many common classes of index-2 problems to 
index-1 and index-0 problems.  Once the index has been reduced, the resulting system is presented to the 
integrator as a DAE or ODE depending on the type of integrator.  The integrator integrates the system to 
generate the simulation results.  

It is important to note that the equation formulation described here results in a set of equations that can be 
solved simultaneously.  Because of this, there is no need to use an algebraic loop solver to integrate these 
equations or to add dynamics to your system to break algebraic loops.  This is a significant advantage over an 
input-output approach to modeling physical systems, for the resulting simulation is a more efficient, more 
robust, and more exact solution. 

  

  equation 
      w == theta.der; 
      v == Ke*w + i*Rwind + Lwind*i.der;  % Motor equations 
      tq == -Kt*i + B*w + J*w.der;         
  end 
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5 Conclusion 
As more engineers rely upon Model-Based Design to improve their development process, the model of the 
physical system (plant model) is becoming increasingly important.  Engineers are learning that it is possible to 
combine in one environment methods best suited for modeling physical systems (physical networks) and control 
systems (input-output methods).  The Simscape language is an option that allows engineers to model the 
physical system while leveraging their MATLAB and Simulink experience and legacy models, as well as 
permitting system level optimization. 
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