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Abstract. Increasing complexity of mathematical models demands techniques of model or-
der reduction (MOR) that enable an efficient numerical simulation. For example, network ap-
proaches yield systems of differential algebraic equations (DAEs) in electric circuit simulation.
Thereby, miniaturization and increasing packing densities result in extremely large DAE sys-
tems. MOR methods are well developed for linear systems of ordinary differential equations
(ODEs), whereas the nonlinear case represents still an open field of research. We consider MOR
for semi-explicit systems of DAEs. Techniques for ODEs can be generalized to semi-explicit
DAEs by a direct or an indirect approach. In the direct approach, we introduce artificial param-
eters in the system. Accordingly, MOR methods for ODEs can be applied to the regularized
system. Numerical simulations using the constructed MOR strategies are presented.

1 Introduction
For large systems of ordinary differential equations (ODEs), efficient model order reduction (MOR) meth-
ods already exist in the linear case, see [1]. We want to generalize according techniques to the case of
differential algebraic equations (DAEs). On the one hand, a high-index DAE problem can be converted
into a lower-index system by analytic differentiations, see [2]. A transformation to index zero yields an
equivalent system of ODEs. On the other hand, a regularization is directly feasible in case of semi-explicit
systems of DAEs. Thereby, we obtain a singular perturbed problem of ODEs with an artificial parame-
ter. Thus according MOR techniques can be applied to the ODE system. An MOR approach for DAEs is
achieved by considering the limit to zero of the artificial parameter.

Systems of DAEs result in the mathematical modeling of a wide variety of problems like electric circuit
design, for example. We consider a semi-explicit system

y′(t) = f (y(t),z(t)), y : R → Rk

0 = g(y(t),z(t)), z : R → Rl (1)

with differential and perturbation index 1 or 2. For the construction of numerical methods to solve initial
value problems of (1), the direct as well as the indirect approach can be used. The direct approach applies
an ε-embedding of the DAEs (1), i.e., the system changes into

y′(t) = f (y(t),z(t))
εz′(t) = g(y(t),z(t))

⇔
y′(t) = f (y(t),z(t))

z′(t) = 1
ε g(y(t),z(t))

(2)

with a real parameter ε �= 0. Techniques for ODEs can be employed for the singularly perturbed system (2).
The limit ε → 0 yields an approach for solving the DAEs (1). The applicability of the resulting method
still has to be investigated.

Alternatively, the indirect approach is based on the state space form of the DAEs (1) with index 1, i.e.,

y′(t) = f (y(t),Φ(y(t))) (3)

with z(t) = Φ(y(t)). To evaluate the function Φ, the nonlinear system

g(y(t),Φ(y(t))) = 0 (4)
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is solved for given value y(t). Consequently, the system (3) represents ODEs for the differential variables y
and ODE methods can be applied. In each evaluation of the right-hand side in (3), a nonlinear system (4)
has to be solved. More details on techniques based on the ε-embedding and the state space form can be
found in [7].

Although some MOR methods for DAEs already exist, several techniques are restricted to ODEs or exhibit
better properties in the ODE case in comparison to the DAE case. The direct or the indirect approach
enables the usage of MOR schemes for ODEs (2) or (3), where an approximation with respect to the
original DAEs (1) follows. The aim is to obtain suggestions for MOR schemes via these strategies, where
the quality of the resulting approximations still has to be analyzed in each method.

In this work, we focus on the direct approach for semi-explicit system of DAEs, i.e., the ε-embedding
is considered. MOR methods are applied to the singularly perturbed system (2). Two scenarios exist to
achieve an approximation of the behavior of the original DAEs (1) by MOR. Firstly, an MOR scheme can
be applied to the system (2) using a constant ε �= 0, which is chosen sufficiently small such that a good
approximation is obtained. Secondly, a parametric MOR method yields a reduced description of the system
of ODEs, where the parameter ε still represents an independent variable. Hence the limit ε → 0 causes an
approach for an approximation of the original DAEs.

We investigate the two approaches with respect to MOR methods based on an approximation of the trans-
fer function, which describes the input-output behavior of the system in frequency domain. We present
numerical simulations using two linear semi-explicit systems of DAEs, which follow from mathematical
models of electric circuits. Thereby, the two test examples are scalable, i.e., the differential part and/or the
algebraic part of the systems can be selected arbitrarily large, whereas the input-output behavior remains
the same.

2 Model Order Reduction and ε-Embedding
A continuous time-invariant (lumped) multi-input multi-output linear dynamical system exhibits the form:{

C dx(t)
dt = −Gx(t)+Bu(t), x(0) = x0,

w(t) = Lx(t)+Du(t),
(5)

where x(t) ∈ Rn is the inner state, u(t) ∈ Rm is the input and w(t) ∈ Rp is the output. The dimension n
of the state vector is called the order of the system. C, G, B, L and D are the state space matrices. The
dimension n of the system coincides to the order of elements contained in an electric circuit if applied in
circuit simulation.

We restrict to semi-explicit DAE systems of the type (5). According to (1), the solution x and the matrix C
exhibit the partitioning:

x =

(
y
z

)
, C =

(
Ik×k 0

0 0l×l

)
. (6)

The order of the system is n = k + l, where k and l are the dimensions of the differential part and the
algebraic part (constraints), respectively, defined in the semi-explicit system (1).

The matrix C in (5) is singular (G is allowed to be singular), and we only assume that the pencil G + sC
is regular, i.e., the matrix G + sC is singular only for a finite number of values s ∈ C. Hence initial value
problems of (5) exhibit unique solutions provided that the initial values are consistent. For more details on
existence and uniqueness of solutions, see [7], where these results are given in Chapter VII.1.

A linear system of the form (5) is often referred to as the representation of the system in the time domain, or
in the state space. Equivalently, one can also represent the system in the frequency domain via the Laplace
transform. Recall that for a vector-valued function f (t), the Laplace transform is defined by:

F(s) := L{ f (t)} =
∫ ∞

0
f (t)e−st dt, s ∈ C, (7)

which applies the transformation in each component separately. The physically meaningful values of the
complex variable s are s = iω , where ω ≥ 0 is referred to as the frequency. Taking the Laplace transforma-
tion of the system (5), we obtain the following frequency domain formulation of the system (without loss
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of generality we assume that D = 0):{
sCX(s) = −GX(s)+BU(s),

W (s) = LX(s), (8)

where X(s), U(s) and W (s) represent the Laplace transforms of x(t), u(t) and w(t), respectively. Eliminat-
ing the variable X(s) in (8), we recognize that the input U(s) and the output W (s) in the frequency domain
are related by the following p×m matrix-valued rational function:

H(s) = L · (G+ sC)−1 ·B = L · (G+ s
(

Ik×k 0
0 0l×l

)
)−1 ·B (9)

provided that det(G + sC) �= 0. The mapping H(s) from (9) is known as the transfer function or Laplace-
domain impulse response of the linear system (5). Following the direct approach, the ε-embedding changes
the system (5) to: {

C(ε) dx(t)
dt = −Gx(t)+Bu(t), x(0) = x0,

w(t) = Lx(t),
(10)

where
C(ε) =

(
Ik×k 0

0 εIl×l

)
for ε ∈ R

with the same inner state and input/output as before. For ε �= 0, the matrix C is regular in (10) and the
transfer function reads:

Hε(s) = L · (G+ s ·C(ε))−1 ·B (11)

provided that det(G+ sC(ε)) �= 0. For convenience, we introduce the notation

M(s,ε) := sC(ε) = s
(

Ik×k 0
0 εIl×l

)
. (12)

It holds M(s,0) = sC with C from (5).

Concerning the relation between the original system (5) and the regularized system (10) with respect to the
transfer function, we achieve the following statement. Without loss of generality, the induced matrix norm
of the Euclidean vector norm is applied.

Theorem 1. For fixed s ∈ C with det(G+M(s,0)) �= 0 and ε ∈ R satisfying

|ε| ≤
c

‖(G+M(s,0))−1‖2
(13)

for some c ∈ (0,1), the transfer functions H(s) and Hε(s) exist and it holds

‖H(s)−Hε(s)‖2 ≤ ‖L‖2 · ‖B‖2 ·K(s) · |s| · |ε|

with the constant
K(s) =

1
1− c

∥∥(G+M(s,0))−1∥∥2
2 .

Proof. The condition (13) guarantees that the matrices G+M(s,ε) are regular. The definition of the transfer
functions implies:

‖H(s)−Hε(s)‖2 ≤ ‖L‖2 ·
∥∥(G+M(s,0))−1 − (G+M(s,ε))−1∥∥

2 · ‖B‖2 .

Using basic calculations, the mid term in right-hand side of the expression above becomes:∥∥(G+M(s,0))−1 − (G+M(s,ε))−1
∥∥

2 ≤
1

1− c
∥∥(G+M(s,0))−1∥∥2

2 · ‖M(s,0)−M(s,ε)‖2

= K(s)‖M(s,0)−M(s,ε)‖2 .
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Due to the definition (12), we obtain:

‖M(s,0)−M(ε,s)‖2 = |s| ·
∥∥∥∥(

0 0
0 εIl×l

)∥∥∥∥
2
= |s| · |ε| .

Thus the proof is completed.

We conclude from Theorem 1 that
lim
ε→0

Hε(s) = H(s) (14)

for each s ∈ C with G+ sC regular. For s ∈ R, we also obtain the uniform convergence

‖H(s)−Hε(s)‖2 ≤ K̂ |ε| for all s ∈ S

in a compact domain S ⊂ C with the constant

K̂ =
‖L‖2 · ‖B‖2

1− c
max
s∈S

∥∥(G+M(s,0))−1∥∥2
2 · |s|

provided that det(G + M(s,0)) �= 0 holds for all s ∈ S. In particular, compact subsets S of the real or
imaginary axis can be considered.

Furthermore, Theorem 1 implies the property

lim
s→0

H(s)−Hε(s) = 0

for fixed ε assuming detG �= 0. However, we are not interested in the limit case of small variables s.

MOR for DAEs MOR for ODEs

dimension n
DAE

dimension q << n
Reduced DAE

ODE

Reduced ODE

dimension n
εparameter

dimension q << n
parameter ε

εintroduce

0εlimit

Figure 1: The approach of the ε-embedding for MOR.

For MOR of the DAE system (5), we have two ways to handle the artificial parameter ε , which results in
two different scenarios. In the first scenario, we fix a small value of the parameter ε . Thus we use one of
the standard techniques for the reduction of the corresponding ODE system. Finally, we achieve a reduced
ODE (with small ε inside). The ODE system with small ε represents a regularized DAE. Any reduction
scheme for ODEs is feasible. Recent research shows that the Poor Man’s TBR (PMTBR), see [8], can
be applied efficiently if the matrix C in (5) is regular, which is indeed our case. The test case with the
simulation result will be presented in the following section. In the second scenario, the parameter ε is
considered as an independent variable (value not predetermined). We can use the parametric MOR for
reducing the corresponding ODE system. The applied parametric MOR is based on [3, 4] in this case. The
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limit ε → 0 yields the results in an approximation of original DAEs (5). The existence of the approximation
in this limit still has to be analyzed. Figure 1 illustrates the strategy.

Theorem 1 provides the theoretical background for the first scenario. We apply an MOR scheme based
on an approximation of the transfer function to the system of ODEs (10). Let H̃ε(s) be a corresponding
approximation of Hε(s). It follows

‖H(s)− H̃ε(s)‖2 ≤ ‖H(s)−Hε(s)‖2 +‖Hε(s)− H̃ε(s)‖2

for each s ∈ C with det(G+ sC) �= 0. Due to Theorem 1, the first term becomes small for sufficiently small
parameter ε . However, ε should not be chosen smaller than the machine precision on a computer. The
second term depends on the applicability of an efficient MOR method to the ODEs (10). Thus H̃ε(s) can
be seen as an approximation of the transfer function H(s) belonging to the system of DAEs (5).

3 Test Example
We investigate a linear forced LC-oscillator with a capacitor, a resistor and an inductor in series. As we
want to extend this LC-oscillator to a scalable benchmark problem (both in differential part and algebraic
part), we arrange n resistors in parallel and m capacitors in series, see Figure 2 (left). A kind of sparse
tableau modeling, cf. [6], has been studied for this case, where the currents through the resistors are defined
as unknowns. If we apply the modified nodal analysis (MNA) [5] to this case, then the equations of the
constraints are not scalable any more. Consequently, we arrange the n resistors in series instead, see
Figure 2 (right). Then the charge oriented MNA is studied. The values for capacitors and resistors (in
both cases) are defined such that the total capacitance and the total resistance coincides for each n and m.
Moreover, all capacitances and resistances are chosen with the same parameters C and R, respectively. The
LC-oscillator is forced by an input signal, since a current source

u(t) = I0 sin
(

2π
T

t
)

with fixed amplitude I0 > 0 and period T > 0 is added to node 1 in both cases.

Example 1. In the case of resistors in parallel, the state variables x ∈ Rm+n+3 consist of the voltages e of
the nodes, the current iL traversing the inductor, the currents iR running through the resistors Ri and the
current iI from the external source. The used physical parameters are

L = 10−6 H, R = n104 Ω, C = m10−9 F,

where n = 300 and m = 300 represent the numbers of the resistors and capacitors, respectively.

The matrix notation of the sparse tableau analysis reads:⎡⎢⎢⎣
ACCA�

C 0 0 0
0 L 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ d
dt

⎡⎢⎣ e
iL
iR
iI

⎤⎥⎦+

⎡⎢⎢⎣
0 AL AR AI

−A�
L 0 0 0

−GA�
R 0 In×n 0

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎣ e

iL
iR
iI

⎤⎥⎦+

⎡⎢⎣ 0
0
0
−1

⎤⎥⎦u(t) = 0.

Example 2. In the case of resistors in series, the state variables x ∈ R2m+n+3 include the voltages e of the
nodes, charges q and a flux φ , the current iL traversing the inductor and the current iI from the external
source. The physical parameters are chosen as

L = 10−6 H, R = 1
n 104 Ω, C = m10−9 F,

where n = 200 and m = 200 indicate again the numbers of the resistors and capacitors, respectively.

The matrix notation of the charge oriented MNA becomes:⎡⎢⎢⎢⎣
AC 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦ d
dt

⎡⎢⎢⎢⎣
q
φ
e
iL
iI

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
0 0 ARGA�

R AL AI
0 0 −A�

L 0 0
Im×m 0 −CA�

C 0 0
0 1 0 −L 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q
φ
e
iL
iI

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0
0
0
0
−1

⎤⎥⎥⎥⎦u(t) = 0.
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Figure 2: Left: RLC circuit example 1, Right: RLC circuit example 2.

4 Simulation Results
We apply the test examples from the previous section considering the first scenario. For the simulation
of Example 1, we arrange the constant parameter ε = 10−12. The PMTBR yields the reduction of the
corresponding ODE system. Figure 3 shows the transfer function both for the DAE, the ODE and the
reduced ODE with fixed ε . The numbers in the parentheses indicate the order of the systems. A Bode
magnitude (phase) plot of a transfer function plots the magnitude (phase) of H(iω), usually in decibel, for
a number of frequencies ω in the frequency range of interest, see Figures 3, 5 and 7.
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Figure 3: Transfer functions for original DAE and ODE and reduced transfer function, Example 1.

In Figure 4, the dashed line illustrates the absolute error between the DAE system and the ODE system.
The two systems exhibit a good agreement for low frequencies and the error increases just for higher
frequencies and then smoothly decreasing for still higher frequencies. The solid line in Figure 4 describes
the absolute error between the original DAE system and the reduced ODE with fixed ε .
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Figure 4: Corresponding error plot, Example 1.

For the simulation of Example 2, we choose the constant parameter ε = 10−15. Again the PMTBR is used
as a reduction scheme for the ODE system. Figure 5 depicts the transfer function both for the DAE and
the ODE and the reduced ODE with fixed ε . This simulation is more sensitive with respect to ε than the
previous example. This sensitivity forced us to arrange a smaller regularization parameter ε in this case.
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Figure 5: Transfer functions for original DAE and ODE and reduced transfer function, Example 2.

The absolute error of the approaches is shown in Figure 6. The results corresponding to the DAE system and
the ODE system demonstrate the same qualitative behavior as in Example 1. The error of the regularization
and the error including the regularization as well as the reduction coincide for high frequencies.
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Figure 6: Corresponding error plot, Example 1.

The underlying electric circuits represent benchmarks, since they are designed such that MOR methods can
be applied efficiently. Hence the PMTBR scheme produces reliable results in the test examples, although
the PMTBR is not an efficient reduction scheme for DAEs in general.

The second scenario with parametric MOR is studied now, see [4] for more details. Thereby, we apply
the systems of Example 1 only. The limit ε → 0 yields the desired result for the DAEs, see Figure 7. The
same order as in the first scenario causes a too large computational effort so we choose the order of the
system smaller in this case as the parameter ε has to be considered during the reduction. The error of
this parametric reduction scheme is shown in Figure 8. The error plot illustrates a good agreement of the
transfer functions for high frequencies. Although the error increases for low frequencies, the difference
remains bounded.
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Figure 7: Transfer function for original DAE and parametric MOR with ε → 0, Example 1.
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Figure 8: Corresponding error plot for parametric MOR with ε → 0, Example 1.

5 Conclusions
The ε-embedding transforms a semi-explicit system of DAEs into a singularly perturbed system of ODEs.
MOR methods for ODEs can be applied to the constructed system, where the parameter ε is included. The
input-output behavior of both DAE system and ODE system is described by respective transfer functions
in frequency domain. We have shown that the transfer function of the singularly perturbed system of
ODEs converges to the transfer function of the original DAEs in the limit of a vanishing parameter ε .
MOR techniques can be applied within two scenarios: fixing a small ε or performing the limit ε → 0 in
a parametric MOR. We have presented numerical simulations, which produce good approximations using
the two approaches in case of linear test examples. As both scenarios are sensitive with respect to the
parameter ε , this sensitivity should be discussed further. Moreover, simulation in time domain will be part
of future work.
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