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Abstract

Network thermodynamics focuses on the energetic analysis of complex metabolic networks. The
method connects free Gibbs energies (under standard conditions), metabolite concentrations and flux
directions by thermodynamic laws. Here, a new application of network thermodynamics is presented,
that determines those metabolite pools that have to be measured in order to determine as many flux
directions as possible. For a medium scaled network informative pool sets are computed. It turns out
that some reactions can already be directed with some few measurements and some reactions cannot
be directed at all. Additionally, the results of measuring energetic currency metabolites is computed
showing different effects.

Introduction

Presently, metabolomic and fluxomic data can be increasingly obtained. Many efforts are undertaken to
create network models reflecting the complete metabolism. One popular way to receive more information
about metabolism is including thermodynamic laws. Applications are given by consistency checking of
mixed concentration/flux data, computing possible flux direction patterns [2, 6], or narrowing the feasible
concentration space of unmeasured pools in biochemical networks [5].

Thermodynamic Concepts

To recall the effect of thermodynamics in metabolic reactions the example of a single reaction v : S → 2P
is considered. Here, the (nominal) substrate S reacts to the (nominal) product P , but the opposite
direction might also be possible. In general, the driving force (described by free Gibbs energy of reaction
ΔvG) is determined from the free Gibbs energies of the reactants and the stoichiometry. Hence, the
energy value of the reaction is defined by

ΔvG = 2 · ΔP G − ΔSG. (1)

For a negative driving force the flux v runs in nominal direction (sign(v) = 1), whereas the opposite
direction is defined by a positive ΔvG value (sign(v) = −1).

Under standard conditions (with one molar pool concentration) the pool formations have constant Gibbs
energies. Under physiological conditions the free Gibbs energies of formation is computed by

ΔfG = ΔfG0 + RT · ln xf (2)

including univsersal gas constant R, temperature T and concentration (in mole) xf . Therefore the
following thermodynamic law must hold:

0 > sign(v) ·
⎛⎝2 · ΔP G0 + RT · ln xP︸ ︷︷ ︸

ΔP G

−(ΔSG0 + RT · ln xS︸ ︷︷ ︸
ΔSG

)

⎞⎠ (3)

For this reaction datasets (xS ,xP ) are possible that refer to either nominal flux direction or to its opposi-
tion. In the case that ΔvG

0 is given with a positive value the flux arises in nominal direction (sign(v) = 1)
only if the concentration of S is much higher than the concentration of P .
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Network Thermodynamics Analysis

The energetic analysis of complex metabolic networks with many reactions is done by so-called network
thermodynamics [8]. Here, the idea of analysing a single reaction (as explained above) is extended to
many reactions. For a given data set with information about all pools of the network, the method
connects stoichiometric information (stoichiometric matrix N enhanced for system substrates and system
products) in matrix Nall, metabolite concentrations listed by vector x, free Gibbs energies (under standard
conditions) vector ΔfG

0, and flux rate vector v by the vectorial thermodynamic law:

0 > diag(sign(v)) ·NT
all ·

(
ΔfG

0 + RT · lnx
)

(4)

For most practical applications it makes sense to restrict the system to its steady states which implies
that the fundamental mass-balance equations

ẋ = N · v(x) = 0. (5)

Furthermore, only models kept in steady state will be explored here.

Methods for network thermodynamic analysis are performed using two types of data uncertainty. There
are insecure information about free Gibbs energies (under standard conditions) and about pool concen-
trations. These can be addressed using tolerance intervals:

ΔfG
0

min ≤ ΔfG
0 ≤ ΔfG

0

max

xmin ≤ x ≤ xmax
(6)

Equations 4-6 now allow to reduce the set of feasible flux direction patterns FDPfeas:

FDP =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩sign(v)

∣∣∣∣∣∣∣∣∣∣
0 > diag(sign(v)) ·NT

all ·
(
ΔfG

0 + RT · lnx
)

N · v(x) = 0
ΔfG

0

min ≤ ΔfG
0 ≤ ΔfG

0

max

xmin ≤ x ≤ xmax

sign(v) ∈ FDPfeas

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (7)
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Figure 1: Effect of data uncertainty on flux direction prediction by computing Gibbs energy of reaction:
the energy is a value for exact data (left result) but forms an interval for data uncertainty (other results).

The effect of data uncertainty concerning prediction of flux direction is presented in Figure 1 for these
different cases:
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• In the ideal case exact data is given for all pools and the exact Gibbs value are known for the
reaction.

ΔfG
0

min = ΔfG
0

max, xmin = xmax

In this case FDP reduces to at most one element.

• Unfortunately, the free Gibbs energy value cannot be directly measured and different assumptions
have to be made [1, 7]. Hence, the energy value is only given in (mainly small) intervals:

ΔfG
0

min ≈ ΔfG
0

max, xmin = xmax.

This might already allow for multiple FDP elements.

• Commonly, measurements are noisy which is caused by complicated measurement protocols. There-
fore, a confidence interval has to be added to the exact data:

ΔfG
0

min ≈ ΔfG
0

max, xmin ≈ xmax.

The number of elements in FDP typically increases.

• In most cases, concentration cannot be measured and Gibbs values are noisy. Thus, only expertise
know-how (i.e. from similar experiments) can help limiting the concentration range:

ΔfG
0

min ≈ ΔfG
0

max, xmin < xmax.

Here, FDP usually contains most FDPfeas elements.

• The worst case of prediction uncertainty is given if there is no limiting pool information available
and, consequently, all data combinations last being acceptable:

ΔfG
0

min ≈ ΔfG
0

max, xmin � xmax.

In this case FDP enlarges to all FDPfeas elements.

For further investigations the mostly weak effect of energy uncertainty is neglected and constant standard
Gibbs values are assumed. They are calculated using Alberty’s method [1].

In the concert of network thermodynamics all reactions effect each other by limiting the tolerated data
intervals. Therefore, new constraints appear in the concentration space which cannot be easily understood
in the high-dimensional space. One way of approximately exploring the thermodynamically feasible
concentration space is done by using the tool annet [10], which offers narrowed concentration limits
(based on constant standard energy values).

Concept of the new method

Here, a new application of network thermodynamics is presented that determines those metabolite pools
that have to be measured in order to determine as many flux directions as possible. Therefore, the
following questions can be addressed:

• Which information is contained in one or more measurable pools on the direction of all FDPfeas

elements?

• Which direction information is given by a specific set of measurable pools?

• Which metabolite pools in a given network need to be measured for determining a specific flux
direction?

• Are there reactions whose direction cannot be determined at all?

• How important is the measurement of energetic currency metabolites ATP, ADP, NAD, NADH
etc.?

Before answering these questions an illustration of principle will be given.

762

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



max

min

min max

lnxP

lnxS

Prediction

with P

Prediction with S

Figure 2: Feasible concentration space used in the simple reaction with its bisections given by thermo-
dynamic flux direction analysis

Illustration of Principle

The prediction of the flux direction with measurements can be explained using the introduced simple
reaction. Figure 2 shows a proper concentration space that is divided in two subspaces describing unique
flux directions.

• In case that both pools S and P are measured the flux direction is always uniquely determinable if
no data uncertainty appears.

• If the set of measurable pools contains only pool P , no predictive can be made. For every value of
P both directions are feasible in concentration space.

• Suspecting S as measured enables the prognose of a unique flux direction for a low concentration.
Here, for a low pool size the flux direction is contra-nominal (sign(v) = −1).

• Given the case that neither S nor P are contained in the data vector, no direction prediction can
be made. However, in the context of a larger network, this might well be the case.

Optimal solution

The answers to the addressed questions will be given in probabilistic terms, i.e. a probability is assigned
to each flux pattern given the measured data. This is done as follows:

1. A log-uniform distribution is assumed in the thermodynamically feasible concentration space of all
metabolites in the network constrained by Equation 4 with Ndir and vdir (Nall, v without undirected
fluxes) instead of Nall and v permitting all FDPfeas elements. The logarithmized scaling of space
dimensions is needed to form realistic data distributions.

2. The high-dimensional distribution is projected to the subspace with the specific set of measurable
pools. Afterwards the uniformity of the distribution gets lost and interesting arrangements occur
(histogram results for a single fixed pool are given in [9]). Furthermore, the distributions in subspace
are used to imitate realistic measured data distributions.

3. For a specific reversible reaction the low-dimensional distribution is checked how far the possible
measured values uniquely determine its net flux direction. Because each network reaction that
is defined to be unidirectional constrains the feasible concentration space the specific reaction v
is now set to be directed, too. Consequently Ndir and v are enlarged for reaction v. For the
forward and the backward directed flux two different sets of flux direction patterns FDPsign(v)=−1

and FDPsign(v)=1 with FDPsign(v)=|1| ∈ FDPfeas are generated describing two separate solution
spaces. Furthermore, these solution spaces are assigned to the low-dimensional distribution.

4. The probability of unique flux direction determination from the subspace distribution is taken as a
measure of information.
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Monte Carlo solution

The practical realization of this analytic concept requires an approximation with a Monte Carlo approach.
In this work the prediction of net flux directions for a specific set of measurable pools is performed similar
to the analytic operations. The steps are schematically shown in Figure 3.
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Figure 3: General steps of the flux direction determination for the measurable pools A and E.

Necessary operations to perform the numerical solution are:

1. Samples are generated in the thermodynamically feasible concentration space (within xmin ≤ x ≤
xmax) of all metabolites in the network. Therefore the Markov Chain Monte Carlo based Gibbs
sampler [3] is used to uniformly distribute the samples in the logarithmized concentration space.

2. Each high-dimensional sample vector is reduced to a low-dimensional one by keeping the dimensions
(numbers given in vector p) of the specific set of measurable pools. Each minimized sample vector
x̃p = x̃p1 · · · x̃pn imitates real measurements.

3. Every sample vector x̃p is checked for its affiliation to one or both flux directions of reaction v by
solving the optimization problems

Δvfw
G(x̃p) = min

xmin≤x≤xmax
N·v=0

xp
min≤x≤xp

max

xp1=x̃p1 ,··· ,xpn=x̃pn

sign(v)=1

diag(sign(vdir)) · NT
dir ·

(
ΔfG

0 + RT · lnx
)

(8)

and
Δvbw

G(x̃p) = max
xmin≤x≤xmax

N·v=0

xp
min≤x≤xp

max

xp1=x̃p1 ,··· ,xpn=x̃pn

sign(v)=−1

diag(sign(vdir)) ·NT
dir ·

(
ΔfG

0 + RT · lnx
)
. (9)

Here, x contains concrete values for measurable pools and concentration intervals for the unknown
pools. The affiliation of this sample vector to one or both flux directions is computed by

affv(x̃p) =
(
Δvfw

G(x̃p) < 0
) ⊗ (Δvbw

G(x̃p) > 0) (10)

and returns affv(x̃
p) = true if exactly one flux direction is possible, otherwise affv(x̃

p) = false.

4. As final step, the probability dv,p of unique flux direction of reaction v is determined by computing
the relative density of all samples (x̃p

1
, · · · , x̃p

m) affiliation:

dv,p =
1

m

m∑
i=1

affv(x̃
p
i ). (11)
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Example Application

For a medium-scaled metabolic network the application of flux direction prediction is done.

Network

A typical metabolic network that has
been analyzed describes the central carbon
metabolism of C.glutamicum. More details
about this microorganism are published in
[4]. As shown in Figure 4 this network con-
tains 42 pools that are inter-connected by
36 reactions. 18 of these reactions are as-
sumed to be unidirectional apriori. The 23
grey-colored pools in Figure 4 are measur-
able. Initially, for each pool a wide range is
given with lower (10μmol/gdw) and upper
concentration limits (0.1mol/gdw). Only
the concentration of water is assumed to
be constant.

In steady state some flux directions are di-
rectly coupled to each other by stoichiom-
etry. Concrete correlations (shown in Fig-
ure 4) occur in the tested network like
the one between the reversible reactions
pglumu and eno. For this reason, the
number of reaction directions that have
to be predicted significantly decreases in
this network. More precisely, directions of
13 reactions or correlated reaction bundles
have to be determined.

The flux direction prediction is accom-
plished as explained in concept chapter.
Here, one thousand samples are tested for
having a unique flux direction for different
subsets of all measurable pools by solving
Equation 8. Performing the analysis for ev-
ery possible subset of the metabolite pools
is a combinatorial problem of high com-
plexity. Limiting the patterns to at most
three pools already results in almost two
thousand different patterns in the tested
case and, of course, each pool pattern is
checked with 13 single reactions or corre-
lated reaction bundles. Consequently, the
analysis is performed only for one, two and
three measurable pools for the presented
network of C.glutamicum.
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Figure 4: Network structure of the central metabolism of
C. glutamicum
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Pool pattern Reaction Result (%)

PEP eno, pglumu 91.5
GAP tis 81.6
MAL fum 68.6
FUM fum 59.3
DHAP tis 33.5

MAL NAD mdh 61.8
MAL NADH mdh 61.7
G6P NADPH g6pdh pgdh 6pgl 57.3
G6P NADP g6pdh pgdh 6pgl 57.2
DHAP E4P tis 51.9

G6P NADP NADPH g6pdh pgdh 6pgl 97.2
MAL NAD NADH mdh 88.7
DHAP E4P F6P tis 65.5
DHAP E4P FBP ald 42.5
E4P G6P GAP pgi 42.2

Pool pattern Result (%)

PEP 7.0
MAL 6.9
GAP 6.3
FUM 4.6
DHAP 2.6

MAL PEP 14.0
GAP PEP 13.3
GAP MAL 13.2
FUM PEP 11.6
FUM GAP 10.8

GAP MAL PEP 20.2
FUM GAP PEP 17.9
MAL NAD PEP 17.1
MAL NADH PEP 17.1
DHAP MAL PEP 16.5

Table 1: Nontrivial local results (left table) and global results (right table) for measurable pool patterns
of size one, two and three

Local results

The output ends up with trivial and nontrivial results which belong to a single (or local) reaction. Trivial
results can directly be derived if all substrate and all product pools of the tested reversible reaction are
measured. An example is given by reaction tis and the pools DHAP and GAP. Clearly, if both pools
(that are all pools reacting in tis) are measured the direction of tis is determined. In opposition to
trivial cases, nontrivial cases are not obvious from the measured pool pattern. Here, one or more pools
are missing to build a trivial case. A nontrivial example is given by reaction eno. Even if PEP can be
measured eno’s direction cannot be completely derived without knowing 2PG, which is not measurable
at all. A list of nontrivial results computed by Equation 11 is given on the left side of Table 1.

If only measurements of a single pool are available for the tested network it is, nevertheless, possible to
predict some flux directions with a high probability. For the case of pool PEP the correlated fluxes eno
and pglumu can be directed for almost every sample (91%). Clearly, the influence of two or more pools
is higher or at least equal to the added influence of the single pools. Consequently, all measurable pools
that are combined to PEP will return the same or even a better result for eno and pglumu. Pool patterns
with the same results like single pools are neglected in the listing of Table 1.

If a data set contains more than one measurement reversible reactions like mdh,ald and pgi become pre-
dictable in their flux direction. Valuable information is delivered from the pool G6P and the energetic
currency metabolites NADP and NADPH : Their measurement can be used to determine the flux direc-
tions of three correlated reactions (g6pdh,pgdh and 6pgl) for almost every data set (97%).

Interestingly, for some cases the pools aren’t even attached to the affected reaction. This happens in
the special case of reaction tis when the measurement of the non-related pools E4P and F6P together
with the attached pool DHAP makes sense (65%). Without measuring the detached pools this reaction
direction is much less determined (33%).

For some reactions the investigations made are not fruitful: The tested reversible reaction r5pi effects
no checked sample of any tested pool pattern. Reasons might be that none of the attached pools is
measurable, and the reaction plays no central role in the described metabolism. Even two reactions (scs
and sdh) of the TCA cycle show almost no effect although many of their affected pools can be measured.
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Global results

Additionally to the (local) effects of a pool pattern concerning single reactions (and correlated reactions)
its (global) predictive power is interesting for all reversible reactions. The realized measure of the global
influence gp of pool pattern p is computed by the mean

gp =
1

n

n∑
i=1

dvi,p (12)

including the local influence dvi,p of each reaction vi. On the right side of Table 1 the best results con-
cerning the global effect are listed for pool size one, two and three.

The best globally predicting pools are GAP, MAL and PEP. One of these pools measured stand-alone
can determine approximately one of all unknown flux directions. Because the three pools affect different
reactions their joining is very informative (20% of all reversible fluxes). In contrast, patterns that are
made up by reaction-sharing pools are not that valuable. Fortunately, some pool patterns even present
better global influences than expected: The pattern given by NAD, MAL and PEP confirms 17% global
influence, expectable are just 14% as sum of the single pools influences.

Because cofactors are involved in many reversible reactions their measurement is expected to be very im-
portant. This assumption is confirmed for many but not all cofactors in the given network of C.glutamicum’s
central metabolism. In combination with other pools the measurement of NAD, NADH, NADP or
NADPH is profitable for direction predictions. In contrast, the measurement of both energetic counter-
parts (i.e NAD and NADH ) is unproductive.

Interestingly, there are hardly global effects obtained for the energetic currency metabolites ADP and
ATP. A reason might be that these cofactors are involved in only two undirected reactions of the tested
metabolism. If a reaction link between these two and other cofactors (i.e. oxidative phosphorylation) is
included, they can play a superordinate role in global view.

Conclusion and Outlook

The prediction of flux directions is realizable with the explained concept based on thermodynamical
data. Therefore, exact concentration measurements are generated in-silico in preset concentration inter-
vals. Thus, data uncertainty is included for measurements, but uncertainty of standard Gibbs values is
neglected. For a small metabolic network concrete answers are given to all central questions. Summarizing
the results yields these conclusions:

• Given pool measurements the prediction of flux directions can be computed with Monte Carlo
sampling. Some specific flux directions cannot be predicted by measurements at all, others are
almost completely determined with just one measurement.

• Pools that are involved in many reactions have more influence on undirected fluxes than pools that
participate in few reactions.

• Clearly, the more pools are measured the more fluxes become predictable. But, thereby the infor-
mative increase becomes smaller.

The used algorithm to generate the presented results is a fundamental prototype, and further develop-
ments will follow. With an improved concept the handling of several thousand samples in large scaled
networks is intended. Furthermore, the exploration of pool patterns with more than three measurements
and the behavior of grouped undirected reactions are of interest.

Acknowledgement

This work was funded by the Evonic Industries and the German Ministry of Education and Research
within the SysMAP project (BMBF 0313704).

767

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



References

[1] Alberty, R. A. Calculation of thermodynamic properties of species of biochemical reactants using
the inverse legendre transform. The journal of physical chemistry. B 109, 18 (2005), 9132–9139.

[2] Beard, D. A., Liang, S.-d., and Qian, H. Energy balance analysis of complex metabolic
networks. Biophysical Journal 83 (2002), 79–86.

[3] Casella, G., and George, E. I. Explaining the gibbs sampler. American Statistical Association
46, 3 (1992), 167–174.

[4] Eggeling, L., and Bott, M. Handbook of Corynebacterium Glutamicum. CRC Press, 2005.

[5] Henry, C. S., Broadbelt, L. J., and Hatzimanikatis, V. Thermodynamics-based metabolic
flux analysis. Metabolic Engineering 92 (2007), 1792–1805.

[6] Henry, C. S., Jankowski, M. D., Broadbelt, L. J., and Hatzimanikatis, V. Genome-scale
thermodynamic analysis of escherichia coli metabolism. Biophysical Journal 90 (2006), 1453–1461.

[7] Jankowski, M. D., Henry, C. S., Broadbelt, L. J., and Hatzimanikatis, V. Group contri-
bution method for thermodynamic analysis of complex metabolic networks. Biophysical Journal 95
(2008), 1487–1499.
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