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Abstract. In this paper, the state observation of a denitrification reactor modelled by a parabolic PDE
system is developed. The strategy is to design a distributed parameter Luenberger observer by a late
lumping approach such as to keep the distributed nature of the system as long as possible in the con-
struction of the state observer. The numerical implementation of the observer is based on the method of
lines and the approximation of the spatial derivatives using a finite element discretization. It however
results in a high order ODE system, which is then reduced to a lower order system involving only some
dominant modes. Such dominant modes are obtained by modal decomposition.
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1 Introduction

Biofiltration has proven to be a promising reaction system for wastewater [4], [9] or drinking water treatment [7],
[2], but also in aquaculture or for control of air pollution. Such a device is compact, fairly simple to build and
operate, and has shown good efficiency for biological treatment associated to low energy consumption. On the
other hand, closed-loop control or supervision is quite limited due to the lack of on-line efficient and low cost
instrumentation. Dealing with this problem then requires to implement state observation strategies.

Moreover, such biofiltration units are characterized by spatial distribution of micro-organisms which are fixed on
a solid support [10]. Such distributed parameter systems (DPS) are represented by partial differential equations
(PDE) to describe their distributed nature [3]. The state observation problem is formulated as an estimation of the
complete spatial profiles of the state variables [15], [14]. Key problems related to the state observation of such
PDE systems are:

e the location of measurement sensors [12], [13] and associated observability considerations [1],

e the choice of an observation strategy, e.g. a Kalman filter, a Luenberger observer, an asymptotic observer,
etc [15].

* the choice of an early or late lumping approach [13], [15].

The main idea of this work is to design a distributed parameter Luenberger observer following the approach devised
in [15] for a denitrification reactor represented by a parabolic PDE system and then, by using the method of lines,
observer PDE equations are solved. Following a method of lines strategy, the observer PDEs are solved using the
finite element method (FEM). In this way, a semi-discrete ordinary differential equation (ODE) system is obtained.
Since the ODE system is usually of high dimension, a modal analysis is done such as being able to use only a
selection of the dominant modes to integrate the solution.

The paper is organized as follow: in section 2 the denitrification reactor model is presented. In section 3 the
distributed parameter observer is designed. In section 4 the solution of then observer PDE system, first by the
method of lines and then by modal analysis, is discussed. In section 5 some results and simulations about state
estimations of denitrification reactor are analyzed. Finally, in section 6 some conclusions are given.

2 Denitrification reactor model

The denitrification process under study is a biofilter, filled with a porous pouzzolane material. Nitrate and nitrite
nitrogen issued from some wastewater are considered at the reactor input. An additional ethanol supply source may
be used as a control input action or at least to ensure a sufficiently high ratio C/N such that carboneous component
does not become the limiting source for the growth. Denitrification is performed in anaerobic conditions. The
biological reaction is a two-stage reaction. The first stage is the denitration which transforms nitrate (NO3) into
nitrite (NO,) while the second phase transforms nitrite into gaseous nitrogen (N,). The same micro-organisms
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population (bacteria) is involved in both stages, with ethanol as co-substrate. This biomass accumulates on the
solid media surface due to filtration of bacteria present in the feeding water (if any) and to net growth. Thus, the
biomass forms a biofilm around the filter particles, which thickens with time. One can then considers that all the
biomass is fixed and does not move along the reactor. On the contrary, the soluble compounds (nitrate, nitrite and
ethanol) are transported along the biofilter.

The dynamics of the biofilter can be deduced from mass balance considerations for the four different components,
considering the following assumptions:

e The detachment of biofilm and particles retained by filtration is neglected;

* Once the biofilm reaches a critical ’per unit’ surface thickness, the deeper part of the biofilm is considered as
inactivated, and a maximum active biomass concentration X, is reached [1]. Then, after some transition
period, the growth of micro-organisms just balances the death and inactivation process;

» The decay of biomass is neglected, hidden in the notion of maximum active biomass concentration.

 Radial dispersion is negligible. Axial dispersion obeys Fick’s diffusion law.

Remark 1 Diffusion phenomenon has been often neglected to simplify the PDE system [2], [5]. It is however a key
parameter for two main reasons. First, if the boundary layer is destroyed by surface irregularities of the biofilm,
substrate diffusion in the biofilm is strongly influenced by fluid turbulence. The gradient of concentration inside
the biofilm is reduced [6]. Secondly, neglecting the diffusion phenomenon results in hyperbolic PDEs, instead of
parabolic PDEs, which have distinctive properties as compared to parabolic PDEs and are usually more difficult
to solve numerically.

The denitrification reactor is then modelled by the following parabolic PDE system:

oxi(z,t) I%xi(z,t)  voxi(zt)  1-Y
o 2oz e e: 1.14the“1(x1’x3)x4(z’t) M)
oxa(z,t) I%xa(z,t)  voxa(zt) 1Y, 1—Y,
o Pz e a: 1.14th£#1 (x1,x3)xa(z,1) — 1.71Yh281~12(x27X3)X4(ZJ) (2)

Ix3(z,1) ’x3(z,t)  vaxs(z,t) 1 1
5% P2 T a. _m“l(xlv”)x‘*(zvt)_@“2(’627’63))64(17” 3)
dx4(z,t .t
% = (1 (x1,x3)x4 (2, 1) + M2 (x2,X3)x4(2,)) (1 - x;(z)) “)

for 0 < z < L, where z is the axial space variable, x;(z,t), x2(z,t), x3(z,7) and x4(z,7) represents the nitrate
(g[N]/m?), nitrite (g[N]/m?), ethanol (g[DCO]/m?) and active biomass concentrations. X1 (t), X2,in(t), X3, (t)
and x4, (1) represent the nitrate, nitrite, ethanol and active biomass at reactor input, respectively. D £V, Yy Vs
and y represent the diffusion term, the flow speed m/h (the ratio between the feeding rate (m3/h) at reactor input
and the biofilter transverse surface (m?)), micro-organisms yield coefficients and population specific rates which
transform nitrate into nitrite, then nitrite into gas nitrogen (1/h).

The nitrate and nitrite growth specific rates are described, respectively, by the model of Monod with two substrate
limitations:

— X1 A3
‘Lll (.X],.X3) - ng“lmax XI+KN03 x3+K¢e

_ X2 X3
X2,X3) =
,u2 ( 2,43 ) ng lJ'ZmzLx X +KN02 x3+Kce

where Mg, Ui,,00 U200 Knosy» Kno, and K¢ are the correction factor for the anaerobic growth, the maximum
specific growth rates of biomass on nitrate and nitrite and the affinity constants with respect to nitrate, nitrite and
ethanol, respectively.

Associated to the dynamic equation for the denitrification process, appropriate initial and boundary conditions are
given by:
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e initial spacial profile at7 =0 for 0 <z < L:

x1(z,t = 0) = x1,0(2) = x1,(0) g[N]/m’ )
x2(z,t = 0) = x20(2) = x2,1(0) g[N]/m’ (6)
x03(z,1 = 0) = x30(2) = x3,(0) g[DCO] /m’® @)
x4(2,1 = 0) = 4.0(2) = Xamax §[DCO] /m’ @®)

* boundary conditions at z = 0 (input) for # > 0

dx; v

(971 = Ff ()Cl *xl,m) (9)

dxy v _

e D—f (X2 — X2,in) (10)

8X3 - Vv )

TZ = Ff(x3—x3,zn) 1D
x4(z,1) = X4, (1) (12)

* boundary conditions at z = L (output) for 7 > 0

(9)(1 o
oz =0 (13)
8x2 -
EN =0 (14)
aX3 -
o =0 (15)

Remark 2 [Initial conditions express that biomass and substrate are homogeneously distributed along the biofilter.
Substrate concentrations are set equal to the corresponding influent concentrations [1].

For numerical application, one considers the following nominal values borrowed from [1]:

Yy, = 0.56 Yy, = 0.54
i, =0.36 1/h U, =0.321/h

Knoy = 1.5 g[N]/m? Kyo, = 1.0 g[N]/m?

Kc =40 g[DCO]/m? Xumax = 800 g[DCO]/m?
ng =0.8 =052

xX1in(t) = 16.93 g[N] /m’ x2,n(1) = 0 g[N]/m?
x3.n(t) = 101.5 g[DCO] /m? x4,x(t) = 0 g[DCO] /m?
Dy = 0.4756 m*/h v=4m/h

The system (1)-(4) can be rewritten in matrix form as:

ox 2%x ox

x(z,t =0) =x0(z2) (17)
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where x = [x1 x2 x3 x4]" is the state vector and matrices A, A, and F(x) are diagonal square matrices € R**4,

In the following, for state estimation purposes, it is assumed that nitrate and nitrite concentrations are measured
both at the input and the output of the biofilter, but also at p — 1 internal location along the biofilter. The biomass
concentration is not accessible, and the ethanol concentration is measured only at the reactor input. In this way,
the measured output is defined as y = [x1(z1,1) ... x1(zp,t) x2(21,1) ... x2(zp,1)]”, where z,, represents the output.

3 Non-linear distributed parameter observer

A nonlinear distributed parameter observer, with a formulation analog to the Luenberger observer, is designed so
as to assign the error dynamics as proposed in [15]. Since DPS dynamics are characterized by an infinite number
of modes, the observer design would in principe require the specification of a large (theoretically infinite) number
of tuning parameters.

In order to bypass this high-dimensional design problem, a late lumping approach to the construction of distributed
parameter observers (DPO) was developed in [15]. In this way, the structure of the DPO follows from a direct
extension of Luenberger’s approach to infinite dimensional systems like:

ok % 9% . O (y—9
E:A]TZQ+A28—Z+F(x)+K(x)(y—Y) (18)

#(z,1 = 0) = %o(2) (19)

where £ = [£] £, £3 £4]7 is the estimated state vector and K (%) is the correction term, a rectangular matrix € R**27,

The design of operator K is based on the estimation error equations e(z,1) = £(z,1) — x(z,t). Therefore, we obtain:

de d%e de R R R
E:A]TZZ‘G‘Aza*Z‘FF(x)_F(x)"’K(x)(y_y) (20)

e(z,t =0) = %(z) —x0(z) (21

The linearization of F(x) along the estimated trajectory £(z,¢) can be done to obtain [15]:

2
d e+A2%+ JdF (x)

de
_A187z2 dz ox

at

e K(E) (y—9) (22)

X

This linearization is justified as soon as the estimation error is assumed sufficiently small, i.e.:

lle(z,2 = 0)]| = [I%0(z) = x0(2) [ << 1 (23)

Physical knowledge about the system is used to design the correction term K (£) (y — ). Considering the i’ PDE,
the i correction term is constructed in terms of error profile e(z,¢) and a tuning parameter row vector ¢; € R!*2,

kK (y—39) = {— (agx(f) )?+Oc,-,1> - (&g;(zx)

for i = 1,2,3,4. Initial profile £y(z) as well as error profile e(z,) along the space in equations above are evaluated
by linear interpolation of measurement states.

+ Ot,-_,2> 0 0} e(z,1) (24)

X

Remark 3 The correction term (24) is used to compensate the nonlinearities of i'* equation. The resulting ob-
server system is asymptotically stable as soon as o; j are positive elements high enough. Since measurements
about ethanol and biomass are not available inside the reactor, their error profile can not be calculed. Therefore,
error related to these two variables are not considered and ;3 and @ 4 are set to zero.
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4 PDE system solution

Once the observer has been developed by the late lumping approach, the implementation of the observer PDE
system requires spatial discretization. In this paper, the method of lines is used to solve the observer PDEs numer-
ically. More specifically, the FEM is selected for spatial approximation, and the resulting system of discretized
equations is integrated in time using an appropriate ODE solver. In this way, a high order semi-discrete ODE sys-
tem is obtained. In order to reduce the order of the ODE system to integrate, a modal analysis may be developed
such as to consider the dominant modes only for numerical integration. This is potentially important because for
very high order systems, it may reduce the cost to compute the final solution in a significant way. Furthermore,
this reduction strategy can be used to design control laws which use expensive synthesis methods as, for exemple,
those envolving an optimization problem with LMI constraints.

4.1 Method of lines

The idea behind the method of lines is the substitution of derivatives by an approximation with respect to one
independent variable (generally space) and numerical integration (time integration) of the resulting semi-discrete
ODE system (discrete in space - continuous in time) [16]. In this work, we approximate the spatial derivatives by
using FEM on the spatial domain divided into N finite discrete elements uniformly distributed. Then, we obtain
the matrices FEM: My, € RVN My € RVN Mp € RV*N and Mg € RV*N to approximate the spatial derivatives
like [11]:

and the vector g; € R" to relate non-homogeneous boundary conditions. Therefore, we obtain the following semi-
discrete ODE system for each state variable x;:

dx; _ . _ R A R
7; = —My; (a1 Mpi + ax(i jy (Mri + M:) )% + My gi + fi(£) + ki(£) (y — 9) (25)
fori=1,2,3,4. The resulting system of semi-discrete ODEs is integrated in time to compute the final solution.

Remark 4 Mp; matrix involves information about homogeneous boundary conditions and g; vector contains in-
formation about non-homogeneous boundary conditions. Because the system boundary conditions (9)-(11) are
non-homogeneous and x; j, can change in time, this term is related to g; vector, specifically to its first element (the
element at input of the semi-discrete ODE system).

4.2 Modal analysis

A convenient and useful form of analysis of second-order equations is through modal decomposition. This form of
analysis is possible when the second order equation like (18) has a spatial operator which can be made self-adjoint
and which has a real discrete spectrum of eigenvalues [§].

Let us consider the state variable x;(&,¢) : RV x .7 — R, where .7 being the semiopen time interval [0,0), ex-
panded in a truncated Fourier series, so that:

N
xi(&,0) = Y of (E)mi (1) (26)
k=1
where ¢ (&) and m(¢) are a set of functions to be determined.

Let us define a spatial operator as:

9°x;
Hixi = ay ;) yzl 27
We solve the following eigenproblem by using the FEM approximation [11]:
A ®; = —My! (ay;)Mpi+ az; o Mpi)®; = A, i=1,2,3,4 (28)
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Here A; € R¥*VN is a real eigenvalue diagonal matrix and ®; € R¥*¥ is a real eigenfunction matrix of the Lapla-
cian operator defined above. Since (28) is a homogeneous self-adjoint differential equation with homogeneous
boundary conditions, the eigenfunctions are orthogonal [8]. Therefore, by defining the spatial projection operator
P = CIDiTMM,-, we can rewrite (25) as:

dmi(t)
dt

= Aimi(1) + a(; @] (2)Mri®i(2)mi(1) — Pi (Mg gi+ fi(£) + ki(£) (v — 5)) (29)

where m; € RN are the time dependent modes of the state variable x;. In the equations above, the state variables
are approximated by using Fourier series (26), the eigenfunctions ®; and the modes m; calculed by (28) and (29)
respectively, as £;(&,1) = ®;(&)m;(¢) [11].

The modal decomposition has the advantage that the N modes related to the spatial discretization of the estimated
state vector X from equation (29) may be organized from the slow modes to the fast ones. Therefore, we can
consider, for the observer implementation, only the modes who involve the main information about the states to
estimate. Only n dominant modes, associated to the first n < N eigenvalues and eigenfunctions, issued from each
A; and ®; matrices respectively, are integrated in the observer. The influence of the modal reduction is discussed
through the numerical illustrations.

5 Results and simulations

At this moment we have designed a distributed parameter observer for a denitrification biofilter and we have
proposed a strategy to solve the PDE system based on FEM and modal analysis. It has been previously shown in
[1] that, except during the initial colonization step, the biomass concentration remains almost constant at Xy,
even after a washing out, so its estimation may be bypassed. Therefore, for sake of simplicity, we have reduced
the system (1)-(4) by taking only the three first PDEs and by considering X, (z,7) = Xumax-

To evolve the observer, a data base has been generated using the simulation of model (1)-(4) with the default
parameters, the boundary conditions and the initial conditions described in section 2. We then consider that the
measured variables are the nitrate and the nitrite at input, in the middle and at output reactor, i.e. p =2, with a
sample period of 1 minute. The observer starts 3 minutes after the process beginning.

Since the mathematical model used to design the observer does not represent, generally, the true real denitrification
biofilter, an uncertain model is considered by adding some uncertainty on the terms p; and f. Specifically, we
use the values p;,,,, = 0.34 and uy,,.. = 0.30 in the observer model, which induce variations in system simulation
larger than variations in the observer. Furthermore, in order to change the system dynamics a step signal is used in
X1,;, boundary condition as:

L 14.93 ;1 < 30 minutes
Min =91 16.93 ;¢ > 30 minutes

For the distributed parameter observer, the tuning parameter matrix o € R*>*? considers three state variables to
estimate and two measurement variables. In order to select the components of matrix o, the cancellation of non-
linear terms was tested and the selection of values in progressive power of 10 was made. The matrix o proposed
is then:

0.85 0
o= 0 100.0
3.5 3.5

Finally, the initial state is constructed by interpoling nitrate and nitrite initial measurements and by initializing the
ethanol to the input value.

Because transport and diffusion terms are identical for the three PDEs (1)-(3), the FEM matrices are the same for
the three Laplacian operators and therefore, we take A; = A and ®; = ®. The examination of matrix A exhibits
that the amplitude of eigenvalues varies from order 10° to order larger than 10%. It can be checked on figures 1
and 3 that all the modes act on the dynamics of the estimated nitrate and the estimated ethanol. On the other hand,
figure 2 shows that only the few first significatly modes act on the dynamics of the estimated nitrite.

1561



I. Troch, F. Breitenecker, eds.  ISBN 978-3-901608-35-3

NO3 modes decomposition
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Figure 1: Nitrate dominant modes.
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Figure 2: Nitrite dominant modes.
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3C modes decomposition
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Figure 3: Ethanol dominant modes.

This is illustrated on figures 4-6, where the simulated state are presented in solid blue and the estimated values
are presented in dashed black, for which 50 modes are used to estimate nitrate and ethanol, while only the first 10
dominant modes are used for the nitrite.

NO3 concertration inside the denitrification reactor
18 T T T T T T T T

Nitrate

Figure 4: Nitrate estimation with 50 modes.
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NO2 concertraton inside the denitrification reacter
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Figure 5: Nitrite estimation with 10 modes.
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Figure 6: Ethanol estimation with 50 modes.

As expected, nitrate and nitrite space profile estimation along time provides a better fitting to the generated data
base than the ethanol space profile estimation since measurements in three locations (input, one internal point and
output) are available for those variables. The ethanol space profile along time is however correctly estimated.
In accordance with the dominant mode analysis, it is sufficient to consider 10 modes for nitrite integration. On
the other hand, one can not reduce the number of modes used for nitrate and ethanol estimations while keeping
admissible quality of estimations. Figures 7 and 8 show in solid blue the simulated state values and in dashed black
the estimated values by using 40 modes to estimate nitrate and ethanol concentration profiles. It is clear that a little
diminution in the number of modes results in a considerable degradation of the state estimation.
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NO3 concertraton inside the denitrification reacter
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Figure 7: Nitrate estimation with 40 modes.

SC concentration inside the denitrification reactor
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Ethanol

Figure 8: Ethanol estimation with 40 modes.

6 Conclusion

A state observation strategy for a denitrification biofilter system using late lumping of the PDE equation has been
proposed. It was demonstrated that such an approach may be positively applied to estimate the spatial profile of
the process state variables while distributed nature of the system is preserved as long as possible. Furthermore, the
observer PDEs were solved by FEM approximation and then, a modal analysis was made in order to determine
the influence of the modes in the application of the observer. It is interesting to observe that such an influence is
different from one state variable to estimate to another one. Therefore, we have used a powerful strategy to estimate
distributed parameter systems and a method to solve the PDEs of the observer with the minimum of information.
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