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Abstract. Modeling problems for controlled motions of an elastic body is considered. A variational princi-
ple, in which displacement and stress fields are varied, is proposed based on the method of integrodifferential 
relations and the linear theory of elasticity. A regular numerical algorithm of constrained minimization for the 
initial-boundary value problems is worked out. The algorithm allows us to estimate explicitly the local and in-
tegral quality of numerical solutions obtained. As an example, the problem of lateral controlled motions for a 
3D rectilinear elastic prism with a rectangular cross section is investigated. 

1 Introduction 
Variational principles in mechanics involving the theory of elasticity have been very thoroughly developed and 
intensively studied by scientists. Among these formulations the minimum principles for potential and comple-
mentary energy, the Hamilton principle can be mentioned (see [22], for example). Many different approaches to 
deduce variational principles for mechanical problems are presented in the literature. It can be noted the recent 
publication concerning the semi-inverse method suggested by He [7]. The variational formulation of the finite 
element method is broadly used in scientific and engineering applications. The mathematical origin of the 
method can be traced to a paper by Courant [5]. Other numerical approaches, e.g., Petrov-Galerkin method [3], 
[4] or the least squares method [21], are being actively developed for solid mechanics. In all these methods it is 
supposed that some of the elasticity relations (equilibrium equations, boundary conditions in terms of stresses 
and etc.) are generalized and the exact solution is approximated by a finite set of trial functions.  

Elastic properties of structure elements can essentially affect the dynamical behavior of the whole system. Some 
parts of mechanical structures with distributed parameters are modeled as elastic bodies with given stiffness and 
inertia characteristics. A significant number of numerical methods has been developed for modeling the behavior 
of dynamical systems described by initial-boundary value problems. One of the most widespread approaches to 
solving problems of such kind is the method of separation of variables [6]. In [1] a regular perturbation method 
(a small parameter method) for investigating the dynamics of weakly non-uniform thin rods with arbitrary dis-
tributed loads and different boundary conditions was proposed. Based on the classical Rayleigh-Ritz approach, a 
numerical analytical method of fast convergence was developed in [2] to find precise values of unknown func-
tions for arbitrary distributed stiffness and inertia characteristics of elastic systems. In modeling the elastic sys-
tems the methods of finite-dimensional approximations, for example the decomposition method and the regulari-
zation method, were developed to reduce an initial-boundary value problem for partial differential equations to a 
system of ordinary differential equations [8], [9]. The direct discretization methods in optimal control problems 
are also well known (see, e.g. [10]). 

The aim of this contribution is to develop the method of integrodifferential relations (MIDR) for dynamical lin-
ear elasticity problems based on the integral formulation of the constitutive equations and to apply this approach 
to analysis and optimization of 3D elastic body behavior. The basic ideas of MIDR were proposed and discussed 
by Kostin and Saurin [11]–[19].  

In the next section, the statement of a dynamic linear elasticity problem is discussed. In the third section the 
method of integrodifferential relations and a new variational formulation of the initial boundary problem in dis-
placements and stresses are considered. The stationary conditions equivalent to the constitutive relations are 
obtained. In Section 4 a numerical algorithm used the finite approximations of unknown functions (displace-
ments and stresses) is developed [12] and the effective integral and local bilateral estimates of solution quality 
are obtained relying on the extremal properties of the finite dimensional variational problem. Sections 5 and 6 
are devoted to numerical modeling, optimization, and analysis of controlled motions of a 3D elastic beam. Con-
cluding remarks are given in Section 7. 

2 Statement of the problem 
Consider an elastic body occupying a bounded domain 4  with an external piecewise smooth boundary 5 . Tak-
ing into account the assumption of the linear theory of elasticity about smallness of elastic deformations and 
relative velocities the motion of the body can be described by the following system of partial differential equa-
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tions [16]:  
 : , ,�� �C p u�� 
  (1) 

 � 	T10 , .
2

6� � � � � 6 �6p f u u�� 
  (2) 

Here �  and 
  are the stress and strain tensors, p and u are the momentum density and displacement vectors, f is 
the vector of volume forces, C is the elastic modulus tensor, and �  is the volume density of the body. The dots 
above the symbols denote partial time derivatives, and T

1 2 3( / , / , / )x x x6 � - - - - - -  is the gradient operator in the 
Cratesian coordinate space . /1 2 3, ,x x x x� . The dots and colons between vectors and tensors point out to their 
scalar and double scalar products, respectively. The components ijklC  of the tensor C are characterized by the 
following symmetry property: ijkl ijlk klijC C C� � . The superscript T denotes the transposition operator. 

Let us constrain ourselves to the case of the linear boundary conditions expressed componentwise in the form: 

 ( ) ( ) , ; , 1, 2, 3 ,k k k k kx u x q v x k7 � 5� � 8 � � �q n�  (3) 

where q  is the loading vector, n  is the unit vector pointing in the direction of the outward normal to the bound-
ary 5 , ku  and kq  are the components of the vector functions u and q, k7  and k�  are given coordinate functions 
defining the type of boundary conditions. In particular, if 1k7 �  and 0k� �  on some part of the boundary 5  
then, according to Eq. (3), the displacement ku  is set by the boundary vector function v  via its component kv . 
To the contrary, if 0k7 �  and 1k� �  then the external load component kq  are defined through kv on 5 . Condi-
tions (3) include also various combinations of linear elastic supports if the pair k7 , k�  is simultaneously non-
zero on a certain part of the boundary. The components of boundary vector v  are given functions of the time t  
and coordinates x . 

It is supposed that at the initial instant 0t �  the distribution of displacements u and momentum density p are 
given as sufficiently smooth functions of the coordinates x  

 0 0(0, ) ( ), (0, ) ( ), .x x x x x� � 84u u p p  (4) 

Note that initial conditions (4) and boundary conditions (3) should be consistent [14]. 

3 The method of integrodifferential relations 
Relations (1)–(4) describe the deformed state of an elastic body at any internal point x  and any instant t . In 
addition, it is assumed that the stresses and displacements at the internal points of the body should tend to 
boundary stresses and displacements, i.e. conditions (3) are satisfied. It is implied that the components of the 
elastic modulus tensor C  and mass density � , defined in the interior of the domain 4 , continuously pass 
through the boundary 5 . Analogously, the displacement and momentum density vectors tend continuously to 
their initial values given by relations (4). On the other hand, it is necessary to take into account that boundary 
and initial conditions (3), (4) are generated by specific physical and geometrical factors. For example, some part 
of the boundary could be an interface between two or more media (elastic or inelastic). In this case, any bound-
ary point belongs simultaneously to the body under consideration and the bodies which generate these boundary 
conditions. So such points on the boundary belong simultaneously to material parts with different mechanical 
properties. In other words, the elastic modulus tensor C  and mass density function �  on such surfaces, strictly 
speaking, are not defined.  

To introduce these uncertainties into the dynamical linear elasticity problem a combined integral relation instead 
of stress-strain and velocity-momentum relations (1) was proposed in [12], and the following integrodifferential 
formulation of initial-boundary value problem (1)–(4) was given: to find such functions 9u , 9� , and 9p  that 
satisfy integral relation 

 ' (
0

1( , , ) 0, : : ;
2

ft

d dt: : �� � �
4

0 � 4 � � � �� � u p C� ; ; * *  (5) 

 1 1, :� � �� � � �u p C�; * 
 �  (6) 

under equilibrium, kinematical, boundary, and initial conditions (2)–(4). Here the auxiliary velocity vector ;  
and strain tensor *  are introduced. 
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Note that the integrand :�  in Eq. (5) has the dimension of energy density and is nonnegative. Hence, the corre-
sponding integral �0  is nonnegative for arbitrary functions u , � , and p  ( 0�0 < ). The proposed integrodif-
ferential problem (2)–(4) and (5) can be reduced to a variational one: to find unknown functions 9u , 9� , and 9p  
minimizing the functional �0   

 
, ,

( , , ) min ( , , ) 09 9 9
� �0 � 0 �

u p
u p u p

�
� �  (7) 

subject to constraints (2)–(4).  

This variational statement for the initial-boundary value problem of controlled motions of an elastic body (1)–(4) 
is formulated with respect to the displacement vector u , stress tensor � , and momentum density vector p . 
After satisfying the equilibrium equation in Eq. (2) nine independent functions remain in the system. In numeri-
cal approaches to the dynamical problem this fact leads to sufficiently large dimension of system parameters. To 
decrease the number of unknown functions in the variational formulation and raise the effectiveness of numerical 
computation a special functional can be proposed  

 0 0 0
0

1( , ) , : : .
2

ft

d dt: :0 u C
�

= � =� � � * *  (8) 

To formulate a constrained minimization problem with 00  the velocity-momentum vector relation 0�;  in 
Eq. (6) must be considered as an additional differential constraint. After that the variational problem is to find 
unknown functions 9u  and 9�  minimizing the functional 00  under constraints 

 

0 0

0 1 0

,
( , ) min ( , ) 0,

,
( ) ( ) , ; , 1, 2, 3 ,

(0, ) ( ), (0, ) ( ).
k k k k kx u x q v x k

x x x x

�
7 � 5

�

9 9

�

0 � 0 �

� 6� �
� � 8 � � �

� �

u
u u

u f
q n

u u u p

��

�

�
� �

�
�

 (9) 

Denote the actual and arbitrary admissible displacements and stresses by 9u , 9�  and u , � , respectively, and 
specify that =9� �u u u , =9� �� � � , then 2

0 0 0 0( , ) = = =0 � 0 � 0 � 0uu �� . The second variation quadratic 
with respect to =u , =�  is nonnegative ( 2

0 0= 0 < ). The fist variation of the functional 00  is equal to zero for 
any admissible variations =u , =�  if 0�* .  

The displacement vector u  and stress tensor �  as well as their variations =u  and =�  are related through the 
equilibrium equation shown in Eq. (9) and  

 .= =� 6�u�� �  (10) 

Introduce the auxiliary tensor >  so that 

 
0 0

( , ) ,
t t

x d d) ) ) �� 6� � �� �u f ��> � >  (11) 

and write down the stationary conditions for 00   
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0

0
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0
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 (12) 

The system of Euler’s equations with the corresponding conditions on the boundary 5  and at initial and terminal 
instants 0, ft t�  can be obtained from Eq. (12). It is possible to show that the stationary conditions for the func-
tional 00  are equivalent to relations 0�*  and together with constraint 0�;  and Eqs. (2)–(4) constitute the 
full system of dynamical equations for linear elasticity. 
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4 Numerical algorithm and error analysis 
Let us describe one of the possible algorithms approximating the solution 9u , 9�  of the variational problem 
defined by Eq. (9). Constrain ourselves to the case of zero volume force 0�f . At the beginning the positive 
integers uN  and N�  are chosen and the approximations u�  and ��  of the solution are defined in the finite di-
mensional form 

 ( ) ( )

1 1

( , ), ( , ).
uN N

k k
k k

k k
t x t x

�

? ?
� �

� �� �u u �� � �  (13) 

Here . /( , ), 1,2,k t x k? � �  is some complete countable system of linearly independent functions and ( )ku , ( )k�  
are unknown real coefficients presented in the vector and tensor forms. The basis functions k?  should be chosen 
so that the approximations u�  and ��  were able to satisfy exactly the equilibrium equation in Eq. (2) as well as 
boundary and initial conditions (3), (4). Therefore, the admissible set of the boundary vector v  and initial func-
tions 0u  and 0p  is settled. It is follows from Eq. (13) that the vectors v , 0u , 0p  must have the structure  

 ( ) 0 (0 ) 0 (0 )

1 1 1

, (0, ), (0, ),
pv u NN N

k k k
k k kx

k k k
x x

5
? ? ?

8
� � �

� � �� � �v v u u p p  

where (0 )ku , and (0 )kp are fixed coefficients; ( )kv  are given constants on the boundary 5 .  

In the next step the conditions (2)–(4) are satisfied with respect to unknown coefficients ( )ku , ( )k�  and the ad-
missible approximations u� , ��  obtained are substituted into the functional 00 . Since the functional 00  is quad-
ratic with respect to the parameters ( )ku , ( )k� , the minimization problem (9) is reduced to the linear system of 
the algebraic equations versus unknown coefficients ( )ku , ( )k� .  

To estimate the quality of the numerical solution ( , )t xu�  and ( , )t x��  the following criterion is proposed [18] 

 

0 0 0

0

1
0

/ , ( , );

1, ( ) ( ) , : :
2

1( , ) : : , :
2

, : : , : .
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err err

W dt W t d

t x

W d W W d
5

=

? ? �

:

5

4

�

4

� � 0 @ A 0 � 0

! �@ � � 4 � � � �

! ��  �

! �� � � � 4 � �

� �

� �

u

u u u C

C C

q u C q C

� �

� �

�� � ��

� � � �

� � � �� �

� �� � � �� � ��

�


 


* * * � 
 � �

* 
 �

 (14) 

Here =  is a small positive constant, 0 00 <�  is the value of functional 00  on the numerical solution, 0@ #  is 
the time integral of the total mechanical energy W , and ?  is the volume density of this energy. The ratio �  can 
serve as a relative integral error of the approximate solution u�  and �� , whereas function 0:�  shows the distribu-

tion of local error. The time derivative (the power) W��  includes a term errW�  which shows the energy change rate 

caused by system discretization. It is follows from Eq. (14) that the value of parasitic energy 
0

ft

errW dt� �  is re-

lated to the value of the error � . 

5 3D beam lateral motions 
As an example of algorithm implementation, let us consider the 3D problem of lateral controlled motions for the 
rectilinear beam with a quadratic cross section (see Fig. 1). The sizes of the cross section do not change along the 
beam length. It is supposed that the static volume forces are absent ( 0�f ) and the beam is made of homogene-
ous and isotropic material with given Young's modulus E , Poisson's ratio � , and volume density � . The geo-
metrical beam parameters such as the beam length L  and structural height 2a as well as terminal time are fixed, 
and hence the problem is defined in the following 4D time-space domain 

 . /1 2 3 1 2 3{ , : (0, ), }, , , : 0 , | | , | | .t x t T x x x x x L x a x aB � 8 84 4 � A A A A  
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Figure 1. Rectilinear elastic beam 

Let us introduce the fixed reference frame 1 2 3Ox x x . Its origin O  coincides with the central point of the left beam 
cross section in the initial time. The 1x -axis is directed along the beam and the coordinate axes 2Ox  and 3Ox  are 
parallel to the cross section sides. The boundary conditions under consideration are 

 2 2 3 3 32

1 1 1 11

12 22 23 13 23 33

11 12 13 1 20 0

0

0, 0

x a x a x a x a x ax a

x L x L x xx L
u u

� � � � � �

� � �

�� �� �� �� ����

� � � ��

� � � � � �

� � � � �
 (15) 

The control boundary function v  is the time-dependent polynomial displacement 3u  of the left beam cross sec-
tion: 

 
1

3 0
2

.
vN

k
kx

k
u v v t

�
�

� � �  (16) 

Suppose also that in the initial instant 0t �  the elastic displacements of the beam are absent and all its points are 
at rest. So in Eqs. (4) 

 0 0( ) ( ) 0.x x� �u p  (17) 

To find an approximate solution and optimize control in the problem of 3D longitudinal beam dynamics a poly-
nomial representation of the unknown functions was used by Kostin and Saurin [16]. In Kostin and Saurin [12] 
bivariate piece-wise polynomial splines defined on rectangular meshes were applied to modeling and optimiza-
tion of lateral Bernoulli beam motions. In this example a finite element approach and spline techniques are used 
to model 3D beam dynamics.  

Let us consider the variational problem (9), fix an approximation order pM , and choose the following approxi-

mations ( )pM
ku� , ( )pM

kl�� , , 1,2,3k l � , for unknown components of displacement vector u  and the stress tensor �   

 

2
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M
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� � � �

� � � �

�
� � �

� � � �

� �

� � � �

� � � �
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0 0
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� � � �
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� �
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� � � �
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� �

� � �� � � ( , ) 2 2
1 2 3

0

( , ) .
pM

i j i j

i j
t x x x

� �
�

 (18) 

Here ( , )i j
ku  and ( , )i j

kl�  are functions of the time t  and coordinate 1x  which will be defined below. These ap-
proximations obey the boundary conditions on the beam sides parallel to the 1x -axis.  

The symmetry with respect to coordinate planes 1 2Ox x  and 1 3Ox x  allows one to decompose the original prob-
lems to four independent subproblems including 3D beam compression-stretching, bending around 2Ox  axis, 
bending around 3Ox  axis, and torsion. In this example the control displacement in Eq. (16) excites only bending 
motions around 2Ox  axis. The polynomials with respect to the variables 2x  and 3x  proposed in Eq. (18) do not 
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violate the symmetry properties of problem (9) under the boundary and initial conditions (15)–(17) as it has been 
shown in [20]. 

 
Figure 2. Space-time mesh. 

Divide the two-dimensional time-space domain 1{ , } (0, ) (0, )t x T L8C � "  on N M"  rectangles klC  which ver-
tices have coordinates 1, 1k lQ � � , 1,k lQ � , , 1k lQ � , ,k lQ , where , { , }k l k lQ t y� ; 1k kt t �# , 1, ,k N� � ; 1l ly y �# , 

1, ,l M� � ; 0 0t � , Nt T� , 0 0y � , My L�  (see Fig. 2). Let also the boundary edges of these time-space rec-
tangles be named , 1( , )kl k l klL Q Q�� , 0, ,k N� � , 1, ,l M� � , and 1,( , )kl k l klT Q Q�� , 1, ,k N� � , 0, ,l M� � . In 
each 4D time-space subdomain  

 . /1 2 3 1 2 3, , , : ( , ) , | | ,| | .kl klt x x x t x x a x aB � 8C A A  

approximating polynomials ( , )i ju7  and ( , )i j
7��  are given 

 
2 3 0 2 3 01 1

0 1 0 1

( , ) ( , )( ) ( )
1 1 1 1

0 1 2 3 4 5

0 0
( , ) , ( , ) , , 1,2,3;

{ }, 0, ,5; , , , , 0, , , 0, , .

p p
j j j j j jj jJ J

i p p

N N

j j j j
u t x u t x t x t x

J j i j j N j j M j N j M

7 7 7� 7�� � 7 �
� � � �

� � �

� � D D � �

� �
� � �

 (19) 

Here ( )Ju7  and 2 3( , )j j
7��  are unknown real coefficients. The integer pN  is chosen so that the equilibrium equation 

and zero initial conditions in Eq. (9), boundary conditions (15), (16) can be exactly satisfied. In addition, to ap-
ply the variational formulation given above the following conformed interelement relations must obey 

 

1
( ) ( 1, ) ( ) ( 1, )

1 2 3 1 2 3 1 2 3 1 2 3

1
( ) ( , 1)

2 3 2 3
( )

{ , } , 1, , 1, 1, , :

( , , , ) ( , , , ), ( , , , ) ( , , , );
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( , , , ) ( , , , ),
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kl k l kl k l
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kl k l
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l

t x L k N l M
t x x x t x x x t x x x t x x x

t x T k N l M
t y x x t y x x

t y

� �

�

8 � � �

� �
8 � � �

�

�

u u u u

u u

n

� �

� �
� � � �

� �
� �
�� ( , 1)

2 3 2 3, , ) ( , , , ), (1,0,0).k l
lx x t y x x�� � �n n��

 (20) 

After satisfying local constraints in Eq. (9) and interelement conditions (20) the resulted finite-dimensional un-
constrained minimization problem yields an approximate solution ( , , )t x v9u� , ( , , )t x v9��  for arbitrary control 
parameters kv  in Eq. (16). 

6 Numerical results 
In this section the numerical results of modeling the 3D lateral beam motion described in Section 5 are pre-
sented. The following dimensionless geometrical and mechanical parameters are chosen: 

 2 41, 0.05, 2, 1, 1, 0.3, 4 , 4 / 3,L a T S EI S a I a� �� � � � � � � �  

and the mesh and approximation numbers are assigned: = 5N , = 1M , = 2pM , = 10pN . For numerical solu-
tion of this dynamical problem a time uniform mesh with node instants = /it Ti N , 1, ,i N� � , is used. After 
satisfying equilibrium equation, initial, boundary, and interelement conditions, the total number of degrees of 
freedom is equal to 1985DOFN � . The following function of lateral displacement for the left beam cross section 
is fixed as a sample control law 
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 2 3(3 ) / 4, (0) (0) ( ) 0, ( ) 1.v t t v v v T v T� � � � � �� �  (21) 

For the given system data the estimated value of the energy time integral is 0.1822@ � . The absolute and 
relative integral error defined in Eq. (14) are 0 0.00200 � , 0 1.1%� � . 

In the Fig. 3 the relative displacement of the central point 3( , ,0,0) ( )u t L v t� of the right free beam cross section 
versus time t  is shown.  

 
Figure 3. Relative displacement at the central point of the right free beam cross section vs. time. 

In Fig. 4 the function of energy linear density 1 1 2 3( , )
a a

a a
t x dx dx? ?

� �
� � �  is depictured. The distribution of solu-

tion local error 1 1 0 2 3( , )
a a

a a
t x dx dx: :

� �
� � �  along axis 1Ox  is presented in Fig. 5. As it is seen from the figure the 

maximal errors is concentrated in the area near the left cross section of the beam. 

 
Figure 4. Linear density of the total mechanical energy along beam axis. 
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Figure 5. Distribution of solution local error along beam axis. 

The 3D beam model takes into account space deflections in any beam cross section at an arbitrary control in-
stant. As an example, the deformed cross-section shape of the beam at 0.8t �  and 1 0.05x �  is displayed in 
Fig. 6. The local error distribution 0:  in this cross section at the same time is shown in Fig. 7. The error function 
on this rectangle reaches its maximal values at the beam edges 

 
Figure 6. Deformed cross-section shape. 

 
Figure 7. Distribution of local error in a beam cross section at a fixed time instant. 
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In this control process the total mechanical energy W  starting with zero value reaches its maximum during this 
motion as depictured in Fig. 8. The energy change rate errW�  caused by system discretization is reflected in Fig. 9. 
The numerical parasitic power defined in Eq. (14) result in noticeable energy underestimate. The linear density 

distribution along beam axis 1Ox  1 2 3( , ) : :
a a

a a
t x dx dxE

� �
� � � C �� �* 
  for these numerical disbalance is shown in Fig. 

10. As it is seen from the figure the maximal energy parasitic source is, analogously to the error distribution 1: , 
the area near the left cross section of the beam. 

 
Figure 8. Mechanical energy versus time. 

 
Figure 9. Energy changes over numerical parasitic disbalance. 
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Figure 10. Linear density distribution along beam axis for the numerical energy disbalance. 

7 Conclusions 
Based on the method of integrodifferential relations a new variational principle which stationary conditions are 
equivalent to the constitutive relation was deduced for the initial boundary value problems of linear elasticity. 
For this principle the nonnegative functional under minimization can serve as integral criteria of the solution 
quality, whereas its integrand characterizes the local error distribution. The effective numerical algorithm used 
the time-space piece-wise polynomial approximations enables one to construct effective estimates for various 
integral characteristics (elastic energy, displacements, etc.). This algorithm can be directly applied to nonho-
mogeneous anisotropic structures. The case of more complex boundary conditions such as aero- and hydrody-
namic forces, nonconservative loading, etc. does not encounter principal difficulties. The FEM realization will 
give one the possibility to work out various strategies of p-h adaptive mesh refinement by using a local error 
estimate. The method can appear to be useful also in advanced beam, plate, and shell theories. The approach 
worked out can be also applied to other inverse mechanical problems such as shape optimization, identification, 
and so on as well as to optimal control problems with inequality constraints. 
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