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Abstract. Mathematical modelling of dynamical processes often yields systems of ordinary differen-
tial equations (ODEs) or differential algebraic equations (DAEs). Physical parameters of the systems
may exhibit uncertainties. We replace these parameters by random variables and thus the solution
becomes a random process. To resolve the stochastic model, quasi Monte-Carlo methods or related
techniques can be employed, which often demand a huge computational work. Alternatively, we apply
the strategy of the generalised polynomial chaos, where a Galerkin approach yields a larger coupled
system of ODEs or DAEs. We focus on autonomous oscillators, where periodic boundary value prob-
lems with a priori unknown periods are considered. Numerical methods to solve the coupled systems
including additional conditions are constructed. Furthermore, we discuss the local stability of the peri-
odic solutions in the stochastic model. Results of numerical simulations are presented.

1 Introduction
Systems of ordinary differential equations (ODEs) or differential algebraic equations (DAEs) appear in many
applications like electric circuit simulation, mechanical engineering or chemical reaction kinetics, for example.
The systems include physical parameters, which may exhibit uncertainties. Consequently, we replace the according
parameters by random variables. The solution of the ODEs or DAEs becomes a random process. The stochastic
model can be resolved by quasi Monte-Carlo methods or related techniques. However, the required simulations
often cause a huge computational effort.

Alternatively, we apply the generalised polynomial chaos (gPC) to solve the stochastic model, see [1, 2, 14].
Thereby, the time- and random-dependent solution is expanded in a series with orthogonal basis polynomials,
which depend on the probability space only. Two approaches can be used to determine the unknown time-
dependent coefficient functions, see [15, 16, 17]. Firstly, the stochastic collocation computes the coefficient func-
tions like in a quasi Monte-Carlo simulation or a multidimensional quadrature. Secondly, a Galerkin method
yields a larger coupled system of ODEs or DAEs for the coefficient functions. Each approach has advantages and
disadvantages. We discuss the Galerkin technique in this article.

We consider oscillators with uncertainties, i.e., periodic problems of ODEs or DAEs. Random oscillators with ODE
models have been simulated via the gPC approach in [7, 8]. An initial value problem of DAEs corresponding to a
forced oscillator is used for gPC simulations in [9]. The gPC is applied to forced oscillators described by boundary
value problems of DAEs in [10, 11], where the Galerkin method generates a non-autonomous coupled system. We
focus on autonomous oscillators within this article. The period of a corresponding solution is unknown a priori in
this case. Sophisticated techniques determine a periodic solution and its rate, see [3]. In case of random parameters,
the solution as well as the period are expanded in the gPC. The Galerkin method results in an autonomous system
for the unknown coefficients.

The local stability of a periodic solution represents a crucial information, see [12]. In technical applications, stable
periodic states are desired. We assume that the periodic solutions are stable for all involved parameters. In case of
systems of ODEs, the local stability can be analysed by the eigenvalues of the monodromy matrix, which satisfies
an initial value problem of a linear matrix differential equation. Generalisations of this concept to systems of
DAEs are feasible, cf. [5, 6]. Since we determine a periodic solution of the coupled system in the gPC approach,
an analysis of local stability can be done. We derive the matrix differential equation in case of the coupled system,
where the coefficient matrix exhibits a specific structure with minors.

Finally, we perform numerical simulations, where the electric circuit of a Colpitt oscillator is considered. A
mathematical model yields an implicit system of ODEs for the transient behaviour of the node voltages, see [4].
We introduce a random parameter and solve a periodic problem of the corresponding coupled system in the gPC
approach. Moreover, the eigenvalues of the monodromy matrix are computed for different magnitudes of the
random parameter to illustrate the local stability of the periodic solutions.

The article is organised as follows. In Section 2, we introduce the model of an autonomous oscillator based on
DAEs, where ODEs represent a special case. The gPC approach followed by the Galerkin method is applied in
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Section 3. We discuss the analysis of the local stability for periodic solutions in Section 4. The results of the
numerical simulations are presented in Section 5.

2 Problem Definition
We consider an implicit system of ODEs or a system of DAEs, which includes physical parameters p∈Q for some
relevant set Q⊆�q. The system reads

A(p)ẋ(t,p) = f(t,x(t,p),p) (1)

with parameter-dependent solution x : [t0, t1]×Q→�n. If the matrix A(p) ∈�n×n is singular, then the system (1)
represents DAEs. Alternatively, a regular matrix implies implicit systems of ODEs. In the system (1), the right-
hand side f : [t0, t1]×�n×Q→�n can include time-dependent input signals. Otherwise, the system (1) becomes
autonomous, i.e.,

A(p)ẋ(t,p) = f(x(t,p),p) (2)

with right-hand side f :�n×Q→�n. Given a solution x of the system (2), the translated function

yθ (t) := x(t +θ) with θ ∈� (3)

also represents a solution of the system (2).

We investigate oscillators, i.e., periodic boundary value problems of the systems (1) or (2) have to be solved. The
periodicity condition reads

x(t +T (p),p) = x(t,p) for all t and each p ∈ Q (4)

with the periods T (p) > 0. For non-autonomous systems (1), a constant period T (p)≡ T0 occurs, where the rate T0

is known from input signals in the right-hand side f. In case of autonomous oscillators (2), the period depends on
the parameters and is unknown a priori. Remark that the translation (3) of a periodic solution is again a periodic
solution of the system (2). We use a standardisation via x̃(τ) := x(τT (p),p) and obtain the equivalent system

A(p) ˙̃x(τ,p) = T (p)f(x̃(τ,p),p). (5)

The corresponding periodicity condition is

x̃(τ+1,p) = x̃(τ,p) for all τ and each p ∈ Q, (6)

which is equivalent to the two-point boundary value problem

x̃(0,p) = x̃(1,p) for each p ∈ Q (7)

provided that initial value problems of (5) exhibit a unique solution.

The boundary value problem (5),(7) is underdetermined, since the period T (p) is unknown a priori. Thus we
have to specify an additional condition to obtain an isolated solution. Popular choices are phase conditions, which
produce additional boundary conditions, see [3, 12]. Without loss of generality, we consider the first component
of the solution x̃ = (x̃1, . . . , x̃n)�. For example, we demand

x̃1(0,p) = η(p) (8)

using η(p) ∈ � from the range of this component. Although the value η(p) may depend on the parameter, a
constant choice η(p)≡ η0 is often feasible for all parameters. An alternative phase condition is

0 = ˙̃x1(0,p) = T (p) f1(x̃(0,p),p), (9)

which implies a local optimum or a saddle point at the boundary τ = 0.

We assume that the chosen parameters exhibit some uncertainties. Consequently, we substitute the parameters by
independent random variables

p :Ω→ Q, p = (p1(ω), . . . , pq(ω))� (10)

with respect to some probability space (Ω,A ,μ). Let each p j exhibit a classical distribution like Gaussian, uni-
form, beta, etc. Hence a joint probability density function ρ :�q→� exists. Given a function f :�q→�, which
depends on the parameters, the expected value reads (if exists)

〈 f (p)〉 :=
∫
Ω

f (p(ω)) dμ(ω) =
∫
�q

f (p)ρ(p) dp. (11)
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The expected value implies an inner product with respect to L2(Ω) via

〈 f (p)g(p)〉=
∫
�q

f (p)g(p)ρ(p) dp (12)

for functions f ,g ∈ L2(Ω) depending on the parameters. We apply the expected value (11) and the inner prod-
uct (12) also to vector-valued and matrix-valued functions by components.

The solution of (1), (2) or (5), respectively, depends on the probability space now. In case of the system (5), we
obtain the random process x̃ : [τ0,τ1]×Ω→�n and T : Ω→� represents a random variable. We are interested
in the expected value, the variance or more sophisticated properties of the stochastic solution. Quasi Monte-Carlo
methods or more efficient variants can be applied to resolve the stochastic model. However, the computational
effort often becomes large.

3 Generalised Polynomial Chaos
Assuming finite second moments of the random process, the expansions of the gPC exist, see [1, 14]. The random
process satisfying the system (5) exhibits the representation

x̃(τ,p(ω)) =
∞

∑
i=0

vi(τ)Φi(p(ω)). (13)

The coefficient functions vi : [τ0,τ1]→�n are unknown a priori. The functions Φi :�q→� represent a complete
basis of multivariate polynomials. The polynomial chaos applies an orthogonal basis with respect to the inner
product (12), i.e., it holds 〈ΦiΦ j〉= δi j with the Kronecker-delta. Table 1 mentions the types of basis polynomials
for some classical random distributions. In case of the Gaussian distribution, the technique is called the polyno-
mial chaos. In case of other random distributions, the approach is called the generalised polynomial chaos. The
series (13) converges in the space L2(Ω) for fixed t.

Accordingly, we assume a finite second moment of the random period. It follows the expansion

T (p(ω)) =
∞

∑
j=0

w jΦ j(p(ω)) (14)

with coefficients w j ∈� and the same basis polynomials (Φ j) j∈� as in (13).

To achieve a numerical method, the infinite sums (13) and (14) are truncated at the mth and m′th term, respectively,
which implies approximations

x̃m(τ,p(ω)) =
m

∑
i=0

vi(τ)Φi(p(ω)) and T m′(p(ω)) =
m′

∑
j=0

w jΦ j(p(ω)). (15)

Approximations of the involved coefficients vi,w j can be determined either by stochastic collocation or a Galerkin
approach, see [16, 17]. We apply the Galerkin approach, i.e., the residual has to be orthogonal to the space of the
used basis polynomials Φ0, . . . ,Φm. Inserting the finite sums (15) in the system (5), the residual becomes

r(t,p(ω)) := A(p(ω))

(
m

∑
i=0

v̇i(τ)Φi(p(ω))

)
−

(
m′

∑
j=0

w jΦ j(p(ω))

)
f

(
m

∑
i=0

vi(τ)Φi(p(ω)),p(ω)

)
. (16)

The Galerkin method implies the larger coupled system

m

∑
i=0

〈Φl(p)Φi(p)A(p)〉v̇i(τ) =

〈
Φl(p)

(
m′

∑
j=0

w jΦ j(p)

)
f

(
m

∑
i=0

vi(τ)Φi(p),p

)〉
(17)

for l = 0,1, . . . ,m with the coefficients vi,w j as unknowns. We rewrite the system (17) into

m

∑
i=0

〈Φl(p)Φi(p)A(p)〉v̇i(τ) =
m′

∑
j=0

w j

〈
Φl(p)Φ j(p) f

(
m

∑
i=0

vi(τ)Φi(p),p

)〉
(18)

for l = 0,1, . . . ,m. The exact coefficient functions of the random process (13) satisfy the relation

vi(τ) = 〈x̃(τ,p)Φi(p)〉 for each i ∈�. (19)

Hence the coefficient functions inherit the periodicity of the random process. We apply the boundary conditions

vi(0) = vi(1) for i = 0,1, . . . ,m (20)
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Table 1: Orthogonal basis polynomials for classical random distributions (univariate case).

random distribution basis polynomials support density function

Gaussian Hermite (−∞,+∞) ρ(x)∼ exp(− 1
2 x2)

gamma Laguerre [0,+∞) ρ(x)∼ xp−1 exp(−cx)
beta Jacobi [a,b] ρ(x)∼ (x−a)p−1(b− x)q−1

uniform Legendre [a,b] ρ(x)∼ 1

to the system (18). Remark that a solution of the boundary value problem (18),(20) represents just an approximation
of the exact coefficients in (13).

If the matrix A(p) does not depend on the parameters, i.e., A(p)≡ A0, then the system (18) simplifies to

A0v̇l(τ) =
m′

∑
j=0

w j

〈
Φl(p)Φ j(p) f

(
m

∑
i=0

vi(τ)Φi(p),p

)〉
(21)

for l = 0,1, . . . ,m due to the orthonormal basis polynomials.

If the nonlinear function f does not depend explicitly on the parameters, whereas the matrix A includes parameters,
then the system is not significantly simplified, i.e.,

m

∑
i=0

〈Φi(p)Φl(p)A(p)〉v̇i(t) =
m′

∑
j=0

w j

〈
Φ j(p)Φl(p) f

(
m

∑
i=0

vi(t)Φi(p)

)〉
(22)

for l = 0,1, . . . ,m.

We have achieved a system of (m + 1)n ODEs or DAEs, respectively. However, the coupled system includes
(m + 1)n unknown functions vi as well as m′+ 1 unknown values w j. Thus we need m′+ 1 additional conditions
to specify a solution. For this purpose, a phase condition can be expanded in the polynomial chaos. Firstly, the
condition (8) yields the additional relations (vi = (vi,1, . . . ,vi,n)�)

vi,1(0) = 〈η(p)Φi(p)〉 for i = 0,1, . . . ,m′. (23)

In the special case η(p)≡ η0, we obtain

v0,1(0) = η0, vi,1(0) = 0 for i = 1, . . . ,m′. (24)

Secondly, the phase condition (9) leads to the additional conditions〈
Φ j(p) f1

(
m

∑
i=0

vi(0)Φi(p),p

)〉
= 0 for j = 0,1, . . . ,m′. (25)

In both cases, m′+1 boundary conditions are given to solve a two-point boundary value problem (18),(20). Com-
mon numerical schemes to tackle periodic boundary value problems are, cf. [3, 13],

1. finite difference methods (time domain),

2. (multiple) shooting methods (time domain),

3. harmonic balance (frequency domain).

These techniques can be modified such that they include the additional conditions.

In each evaluation of the right-hand side of (18), an expected value (11) has to be computed for each component.
We obtain an approximation via Gaussian quadrature with respect to the underlying probability density function.
If the function f does not depend on the parameters and represents a polynomial, then the order of the quadrature
can be chosen sufficiently high such that the approximation becomes exact.

If a numerical solution (15) has been computed, then we achieve an approximation of the solution of the original
system (2) via the transformation

xm(t,p(ω)) .= x̃m
(

t
T m′(p(ω))

,p(ω)
)

. (26)

Furthermore, we comment on the Galerkin approach in comparison to stochastic collocation in case of boundary
value problems. On the one hand, the technique of the stochastic collocation is similar to a quasi Monte-Carlo
method or a multidimensional quadrature. Thus realisations p1, . . . ,pK of the parameters are chosen, where the
number K is often large. For each realisation p j, a boundary value problem of the system (2) or (5), respectively, has
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Figure 1: Location of the eigenvalues of the monodromy matrix in the case of a stable periodic solution.

to be solved to obtain a periodic solution. Newton iterations yield numerical solutions of corresponding nonlinear
systems. Hence we have to guarantee the convergence of a large number of Newton methods. Sophisticated
algorithms are required to generate appropriate starting values for the iteration in each nonlinear system. On the
other hand, the Galerkin approach yields just one boundary value problem of the large coupled system (18). Thus
we have to control the convergence of a single Newton iteration only. To evaluate the right-hand side of the
system (18), expected values (11) are computed. For a general nonlinear function f, multidimensional quadrature
yields approximations using a large number of grid points p1, . . . ,pK of the parameters again. Nevertheless, no
nonlinear systems have to be solved to evaluate the right-hand side of (18). This advantage of the Galerkin approach
holds for boundary value problems of systems of differential equations in general.

4 Analysis of Local Stability
In this section, we discuss the local stability of the periodic solutions. Thereby, we consider the case of ODEs,
i.e., it holds A(p)≡ In and the parameters are included in the right-hand side f only. A system of implicit ODEs is
equivalent to this situation. The local stability of a periodic solution of ODEs is determined by the eigenvalues of
the monodromy matrix, see [12]. Generalisations of this stability analysis to systems of DAEs are given in [5, 6].
Let x be a periodic solution of the system (1) with rate T (p) in case of ODEs. The time- and parameter-dependent
matrix M :�×Q→�n×n satisfies the initial value problem of a matrix differential equation

Ṁ(t,p) =
∂ f
∂x

(t,x(t,p),p) M(t,p), M(0,p) = In, (27)

where ∂ f
∂x ∈�n×n represents the Jacobian matrix of f with respect to x. The monodromy matrix corresponding to

the periodic solution is M(T (p),p). Let λ1, . . . ,λn ∈� be the eigenvalues of the monodromy matrix. The periodic
solution is locally stable if and only if |λ j|< 1 holds for all j. Figure 1 illustrates this situation.

Now let x be a solution of the autonomous system (2). The matrix differential equation (27) just changes into

Ṁ(t,p) =
∂ f
∂x

(x(t,p),p) M(t,p), M(0,p) = In. (28)

The monodromy matrix M(T (p),p) exhibits one eigenvalue λ = 1, which reflects that a translation (3) of a periodic
solution is still a solution of the autonomous system (2). The periodic solution is locally stable if and only if |λ j|< 1
holds for all j = 2, . . . ,n. This stable case is also shown in Figure 1.

We can also apply the standardised system (5). We define M̃(τ,p) := M(τT (p),p). The corresponding matrix
differential equation reads

˙̃M(τ,p) = T (p)
∂ f
∂ x̃

(x̃(τ,p),p) M̃(τ,p), M̃(0,p) = In. (29)

The monodromy matrix is M̃(1,p) = M(T (p),p).

We analyse the system (21) from the gPC approach with A0 = In. Let v := (v�0 , . . . ,v�m)� be a solution of (21)
with periodicity (20) for fixed values w0, . . . ,wm′ . To determine the monodromy matrix, the corresponding matrix
differential equation exhibits the form

Ṅ(τ) = B(τ)N(τ), N(0) = I(m+1)n (30)

with N,B :�→�(m+1)n×(m+1)n. The solution N(1) represents the monodromy matrix, which determines the sta-
bility of the periodic solution v. Investigating B = (Bi j), the minors Bi j ∈�n×n for i, j = 0,1, . . . ,m are calculated
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Figure 2: Circuit of Colpitt oscillator.

as follows

Bi j(τ) =
∂
∂v j

[
m′

∑
k=0

wk

〈
Φi(p)Φk(p) f

(
m

∑
l=0

vl(τ)Φl(p),p

)〉]

=
m′

∑
k=0

wk

〈
Φi(p)Φk(p)

∂
∂v j

[
f

(
m

∑
l=0

vl(τ)Φl(p),p

)]〉

=
m′

∑
k=0

wk

〈
Φi(p)Φ j(p)Φk(p)

∂ f
∂x

(
m

∑
l=0

vl(τ)Φl(p),p

)〉
.

(31)

The interchange of the differentiation and the integration is based on the assumption that the functions in the

Jacobian matrix ∂ f
∂x ∈�n×n are continuous in all variables.

Solving the initial value problem (30) with the matrix (31) yields the monodromy matrix N(1), which exhibits
(m + 1)n eigenvalues. Since the system (21) is autonomous, an eigenvalue λ1 = 1 occurs. We assume that the
original system (2) features stable periodic solutions for all parameters p ∈ Q. An interesting information is if
the periodic solution of the gPC system (21) is also stable in this case. For a small variance of the parameters,
m+1 clusters of n eigenvalues are present. Consequently, one cluster is situated around λ1 = 1. The question is if
all but one eigenvalues of this cluster have a modulus smaller than one.

5 Numerical Simulation
Figure 2 demonstrates the electric circuit of a Colpitt oscillator, which represents a typical LC-oscillator. The
circuit includes four capacitances, four resistances, an inductance and a bipolar transistor. A specific mathematical
modelling, see [4], yields a system of implicit ODEs of the type (2) for four unknown node voltages⎛⎜⎝ 1 0 0 0

0 C1 +C3 −C3 −C1

0 −C3 C2 +C3 +C4 −C2

0 −C1 −C2 C1 +C2

⎞⎟⎠
⎛⎜⎝ u̇1

u̇2

u̇3

u̇4

⎞⎟⎠ =

⎛⎜⎜⎜⎝
R2
L (u2−u1)

1
R2

(uop−u1)+(ıS + ıS
bC

)g(u4−u2)− ıSg(u4−u3)
− 1

R4
u3 +(ıS + ıS

bE
)g(u4−u3)− ıSg(u4−u2)

− 1
R3

u4 + 1
R1

(uop−u4)− ıS
bE

g(u4−u3)− ıS
bC

g(u4−u2)

⎞⎟⎟⎟⎠ .

(32)
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Figure 3: Periodic solution of Colpitt oscillator (u1: —, u2: - - -, u3: -·-·-, u4: · · ·).

The current-voltage relation of the bipolar transistor is described by the nonlinear function g(u) = exp(u/Uth)−1.
We apply the technical parameters

C1 = 5 ·10−11 F, C2 = 10−9 F, C3 = 5 ·10−8 F, C4 = 10−7 F,
R1 = 12000Ω, R2 = 3Ω, R3 = 8200Ω, R4 = 1500Ω,
L = 0.01 H, uop = 10 V, ıS = 10−3 A, bE = 100, bC = 50, Uth = 2.585 ·10−2 V.

A periodic solution with time rate T0 = 1.25 · 10−4 s exists, which is shown in Figure 3. This solution has been
computed using the phase condition (8) with η = 10. A shooting method, see [13], determined a numerical
solution, where the trapezoidal rule was applied in solving initial value problems.

We arrange the random parameter

Ĉ3(ξ ) := C3(1+dξ ) (33)

with a constant d > 0 and a uniformly distributed random variable ξ ∈ [−1,1]. The capacitance matrix in the
left-hand side of (32) is regular for all Ĉ3(ξ ) provided that d < 1 holds. We choose a relatively large uncertainty
of 10%, i.e., we fix d := 0.1 in the following.

We apply the gPC system (18) according to the autonomous implicit system (32). We select m = m′ = 3 in the
finite gPC expansions (15). Hence the system (18) consists of 16 equations. In case of the uniform distribution,
the orthogonal basis functions are the Legendre polynomials.

The periodic boundary value problem (18),(20) has to be solved. As additional conditions to determine the val-
ues w j, we use (24) with

v0,1 = 10, vi,1 = 0 for i = 1,2,3. (34)

A shooting method identified a numerical solution of the boundary value problem, where the trapezoidal rule
solved the involved initial value problems again. To evaluate the right-hand side of (18), approximations of the
expected values (11) were calculated by Gauss-Legendre quadrature using 10 nodes.

Figure 4 depicts the approximations of the expected values and the variances obtained by the numerical solution
using the gPC. The expected values are similar to the deterministic solution shown in Figure 3. We notice that
the component u1 is not sensitive with respect to the random capacitance, since its variance is nearly zero. The
expected values coincide with the coefficient functions of degree i = 0. Figure 5 and Figure 6 depict the other
coefficient functions of the components u1 and u4, respectively. In case of u1, we recognise the conditions (34).
The approximation of the coefficients corresponding to the random period, see (15), reads

w0 = 1.2508 ·10−4, w1 = 1.4019 ·10−6, w2 =−3.0163 ·10−8, w3 = 1.3170 ·10−9.

This data can be used in a reconstruction (26) if desired.

For comparison, we compute approximations of the expected values and the variances by a quasi Monte-Carlo
method. Since a single random parameter (33) is considered, we simply use equidistant realisations

ξ j :=−1+( j−1)Δξ for j = 1, . . . ,K with Δξ :=
2

K−1
. (35)

Hence K periodic boundary value problems of the system of ODEs (32) have been solved by a shooting method for
the different parameters. Figure 7 illustrates the corresponding mean values and sample variances using K = 1000.
The results agree to the simulation of the gPC system (18) shown in Figure 4.
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Figure 4: Expected values (left) and variances (right) of all components obtained by gPC simulation of Colpitt oscillator
(u1: —, u2: - - -, u3: -·-·-, u4: · · ·).
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Figure 5: Coefficient functions vi of gPC expansion for u1.
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Figure 6: Coefficient functions vi of gPC expansion for u4.
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Figure 7: Expected values (left) and variances (right) of all components determined by quasi Monte-Carlo method
applied to Colpitt oscillator (u1: —, u2: - - -, u3: -·-·-, u4: · · ·).
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Figure 8: Eigenvalues of monodromy matrix for gPC system corresponding to Colpitt oscillator. Different magnitudes d
of the uncertainty are applied in (33).

Furthermore, we investigate the local stability of the periodic solutions of the gPC system (18) with four different
magnitudes d = 0.01,0.1,0.2,0.3 of uncertainty in (33). The periodic states of the underlying system (32) are
locally stable for all involved random capacitances Ĉ3. The periodic solutions of (18) are computed numerically
as outlined above. We solve the initial value problems (30) by trapezoidal rule to obtain the corresponding mon-
odromy matrices. The modulus of the resulting eigenvalues is depicted in Figure 8. In all cases, eight eigenvalues
are close to zero, which reflects that the underlying ODE system (32) is stiff. For a small value d, we recognise
the clusters of eigenvalues. In the case of tiny parameters d, we cannot decide if an eigenvalue from the cluster
around λ1 = 1 exhibits a modulus smaller or larger one due to small errors in the applied numerical methods. In
the given examples, all but one eigenvalues have a modulus smaller than one. Hence the periodic solutions of the
gPC system (18) are locally stable.

6 Conclusions
The gPC yields strategies to resolve systems of ODEs or DAEs with random parameters. In case of oscillators,
periodic boundary value problems are considered. We have applied a Galerkin method to obtain a coupled system
of ODEs or DAEs, respectively, for the unknown coefficient functions in the gPC expansion. Additional conditions
to identify the coefficients of the random period have been constructed in the case of autonomous oscillators.
We investigated the concept of local stability for periodic solutions satisfying the autonomous coupled system
from gPC. Numerical simulations demonstrate that the used gPC approach resolves the stochastic model correctly.
Moreover, the periodic solution of the coupled system is locally stable in the employed test example. An open
question is if the solution of the coupled system inherits the stability of the periodic solutions satisfying the original
systems in general.
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