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Abstract. In this article, the problem of long-term integration in the Wiener-Hermite calculus for
ordinary differential equations with random parameters is discussed. The Wiener-Hermite calculus is
known to lose accuracy with increasing time, even if it provides good results for short times. This
is demonstrated for the Van-der-Pol equation with a random parameter. To reduce this problem, the
adapted stochastic spectral method (aSSM), which is based on the work of P. Vos [8], is presented.
Applying aSSM to the Van-der-Pol equation reduces the error considerably and allows an accurate
long-term integration.

1 Introduction
This paper deals with the method of stochastic spectral expansion of random variables with finite variance. The
stochastic spectral expansion is based on the work of N. Wiener [11] and was considered in the framework of gen-
eralized Fourier series by R. Ghanem and P. S. Spanos, see [2]. Karniadakis, LeMaıtre and co-workers developed
the method [14, 6, 5], which is still an active field of research [1].
Problems arising in industry possess large dimensions and are time consuming to compute, even in the determin-
istic case. Therefore in the case of uncertain data, they are often not treatable with standard techniques like Monte
Carlo simulation. The method of stochastic spectral expansion, or one of its derivates, often provides a good means
to handle such problems. We choose the Van-der-Pol equation as benchmark problem, following P. E. Zadunaisky,
who stated "I have a theory that whenever you want to get in trouble with a method, look for the Van-der-Pol
equation.", see [3].
Although its simplicity in application, the calculus of stochastic spectral expansion does not provide a general
purpose method. For example the costs increase exponentially with the number of random parameters in the
underlying model. Furthermore, no mechanisms for error estimation and control are available. Up to now, the
standard way to check accuracy is to compare the results with a reference solution computed by Monte-Carlo sim-
ulation. This is not satisfactory in practical use.
To reduce this problem, we developed the adapted stochastic spectral method (aSSM). By adapting the density
while computing the solution, we are able to reduce the error considerably in contrast to the standard stochastic
spectral decomposition. The work is organized as follows. At first the Van-der-Pol equation is derived from mod-
eling the electrical circuit shown in figure 1. Subsequently, the application of the stochastic spectral decomposition
method to the randomness dependent Van-der-Pol equation is discussed. After that, the algorithm of aSSM is
elaborated and numerical results of its application to the random Van-der-Pol equation are presented. We close this
work by stating conclusions and objectives for future work.

2 Derivation of the Van-der-Pol equation
Preliminarily we derive the Van-der-Pol equation (VDP) from the modeling of the electrical circuit shown in figure
1. It consists of an inductance L, a capacitor C, a tunnel diode and the grounding U0 as well as an operational
voltage Uop. We are interested in the voltage at the nodes N1 and N2. Modeling electrical circuits is based on the
two fundamental rules of Kichhoff, which can be stated as follows:

1. the sum of all currents in each node equals zero,
2. the sum of all partial voltages in a loop equals zero.

Furthermore, we need the model equations for the basic components of the electrical circuit [4]

UL = LİL, (1)
IC = CU̇C, (2)

UR = RIR, (3)
ID = f (UD). (4)

Here, U∗ and I∗ denote the respective voltages and currents for L the inductance, C the capacitor, R the resistance
and D the tunnel diode. The function f describes the characteristics for the tunnel diode. We use the notation
˙ := d/dt.
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Figure 1: Circuit with an inductance L, a capacitor C, a resistance R, a tunnel diode and the grounding U0 as well as an
operational voltage Uop. Additionally two nodes N1 and N2 are plotted.

Having settled the basic physical laws, we develop the mathematical model for the circuit in figure 1. We denote
the voltage at node Ni by Ui, i = 1,2. The current I1→op between N1 and the operational voltage, the current I2→C→0
from node N2 to the ground via the capacitor and the current I2→D→0 from node N2 to the ground via the tunnel
diode are given by

I1→op = (U1 −Uop)/R,

I2→C→0 = C(U̇2 −U̇0),

I2→D→0 = f (U2 −U0),

(5)

which are direct applications of (2)-(4). Using Kirchhoff’s rules and equations (5) we get

0 =
1
R

(U1 −Uop)+ I1→2, (6)

0 = I2→1 +C
(
U̇2 −U̇0

)
+ f (U2 −U0). (7)

The currents I1→2 and I2→1 are defined by the same systematics as indicated above, denoting the currents from
node N1 to N2 and reverse. Differentiation of (6) with respect to time yields

0 =
1
R

(
U̇1 −U̇op

)
+

1
L

(U1 −U2) , (8)

0 =
1
R

(U1 −Uop)+CU̇2 + f (U2), (9)

where we already introduced (1) for İ1→2, exploited the fact that I2→1 = −I1→2 and set U0 ≡ 0. The combination
of equations (8) and (9) results in

0 = CÜ +

(
RC
L

+
d

dU
f (U)

)
U̇ +

1
L

(R f (U)+U −Uop) , (10)

omitting the subscript of U2. We fit a polynomial of degree 3 to the characteristic curve of the diode

f (U) = a1U + a2U2 + a3U3,

so that the well known nonlinear Van-der-Pol oscillator results from equation (10)

0 = ÿ(t)+ p
(
y(t)2 −1

)
ẏ(t)+ y(t). (11)

The parameter p represents a combination of the polynomial coefficients ai, i = 1,2,3, and denotes the uncertainty
in the following.
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distribution orthogonal polynomial support
continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)

Beta Jacobi [a,b]

Uniform Legendre [a,b]
discrete Poisson Charlier {0,1,2, ...}

Binomial Krawtchouk {0,1, ...,n}
Negative binomial Meixner {0,1,2, ...}

Hypergeometric Hahn {0,1, ...,n}

Table 1: Distributions and the corresponding orthogonal polynomials (n ∈ N and a,b ∈ R).

3 Stochastic spectral expansion and stochastic domain decomposition
In this section we introduce the stochastic spectral expansion, also known as Wiener-Hermite expansion, which is
an expansion of random variables with finite variance into a series of Hermite polynomial functionals. It is based
on the pioneering work [11] of N. Wiener in 1938. In [2] R. Ghanem and P. D. Spanos put it into the framework
of generalized Fourier series, in order to work more easily. Further advancements were introduced in [14] by
D. Xiu and G. E. Karniadakis. They proposed the use of arbitrary basis functionals of L2(P) with respect to an
appropriate choice of weight function ρ . Assume X(ξ ) ∈ L2(P) is a random variable and ρ is the density function,
which we assume to exist, of the probability measure P. Further we denote the respective orthogonal polynomial
functionals by {Ψi}

∞
i=0. If they belong to the Askey scheme of orthogonal polynomial functionals, the generalized

Wiener-Hermite expansion

X(ξ ) =
∞

∑
i=0

qiΨi(ξ )

is called Wiener-Askey expansion of X . It is a remarkable fact, that the density functions for all common dis-
tributions correspond to weight functions of orthogonal polynomial functionals in the Askey scheme, see table
1.

But not only orthogonal polynomial functionals from the Askey scheme are suitable for the stochastic spectral
expansion. Every complete basis of L2(P) can be chosen. In [6, 5] O. LeMaître et. al. used Wavelets as basis func-
tionals. In this article, we concentrate on orthogonal polynomial functionals, which are orthogonal with respect to
arbitrary weight functions.

A further advancement of the Wiener-Hermite expansion is the stochastic domain decomposition. That means, that
the underlying probability space is divided into elements. This method was proposed by G. E. Karniadakis et. al.
in [9], where it is called Multi Elements generalized Polynomial Chaos (MEgPC). For the reason, that it will be
supplementary used in the adaptive Stochastic Spectral Method, we give a short introduction on stochastic domain
decomposition. For simplicity we restrict to the one dimensional case.
Let y(ξ ) : S → I be a random variable on the probability space (S,F (S),P) onto an interval I ⊂ R and assume
a decomposition of S into n disjunct intervals {Sk}

n
k=1 is given. We denote the density of y by ρ : I → R+

0 . The
decomposition of S into disjunct intervals will be prescribed by aSSM as we will see in section 5.2. The stochastic
spectral expansion of y restricted to Sk, denoted by yk, can be computed as follows: at first we compute the
conditional density ρk of yk, k = 1, ...,n, by

ρk(ξ ) =
ρ(ξ )

P(Sk)
.

Secondly, orthogonal polynomial functionals {Ψi,k}
∞
i=0 with respect to ρk are constructed on Sk, using a stable

Gram-Schmidt orthogonalization procedure. This procedure results in a number of n stochastic spectral expansions

yk(ξ ) =
∞

∑
i=0

qi,kΨi,k(ξ ), for k ∈ {1, ..., n}.

Using these expansions, we are able to compute the moments of y. For example the expected value is computed by

E(y) =
∫
S

y(ξ )ρ(ξ )dξ =
n

∑
k=1

P(Sk)
∫
Sk

yk(ξ )ρk(ξ )dξ =
n

∑
k=1

P(Sk)q0,k.

Analogously, the variance can be computed by

V(y) =

∫
S

y(ξ )2ρ(ξ )dξ −E(y)2 =
n

∑
k=1

P(Sk)
∞

∑
i=0

q2
i,k −E(y)2,
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where we used Parseval’s equality, see f.e. [10]. The variance will be approximated by

V(y) ≈
n

∑
k=1

P(Sk)
m

∑
i=0

q2
i,k −E(y)2,

and m ∈ N is called the order of the stochastic spectral expansion. In all the calculations above we assumed the
polynomial functionals to be normalized to have the norm equal to 1.

4 The stochastic Van-der-Pol equation
We now return to the Van-Der-Pol equation (11) and assume the parameter p to be a random variable. We choose
the range measure to be P0 := U [1.9,2.1]. Its density is given by

ρ (0)(p) =

{
5 if p ∈ [1.9,2.1]
0 else.

The solution becomes a stochastic process y(t, p) and the Van-der-Pol equation becomes a random differential
equation

0 = ÿ(t, p)+ p
(
y(t, p)2 −1

)
ẏ(t, p)+ y(t, p). (12)

We assume the initial conditions to be prescribed deterministically by y(0, p)≡ 0.1 and ẏ(0, p)≡ 0.0. The density
of y(ti, p) for a fixed time ti will be denoted by ρ (i). There are two possible ways to apply the Wiener-Askey
calculus to the random Van-der-Pol equation. The first one works as follows: we insert the truncated expansion

y(t, p) ≈
m

∑
i=0

qi(t)Ψi(p)

into (12)

0 =
m

∑
i=0

q̈i(t)Ψi(p)+ p

⎛⎝(
m

∑
i=0

qi(t)Ψi(p)

)2

−1

⎞⎠ m

∑
i=0

q̇i(t)Ψi(p)+
m

∑
i=0

qi(t)Ψi(p),

and project onto the finite dimensional subspace F := span{Ψ0, ...,Ψm} ⊂ L2(P0), so that we arrive at an m-
dimensional system of deterministic ordinary differential equations in the unknown coefficient functions {qi}

m
i=0.

These fully coupled differential equations can be solved by using suitable integrators.
The second way of applying the Wiener-Askey calculus is called the non-intrusive method, or stochastic collo-
cation, [12]. Here we use the properties of the Fourier series and compute the coefficient functions directly by
integration:

qi(t) =
∫
S

y(t, p)Ψi(p)ρ(p)d p, (13)

for i = 1, ..., m. Although the following method of adapted stochastic spectral expansions can be applied to both
methods of application, we will restrict to the non-intrusive method.

We now discuss the problem arising from the long-term integration of random differential equations. Therefore
we consider the Wiener-Askey expansion

y(t, p) =
∞

∑
i=0

qi(t)Ψi(p),

and compute the coefficient functions {qi}
∞
i=0 using formula (13). The polynomial functionals {Ψi}

∞
i=0 are chosen,

so that they are orthogonal with respect to the weight function ρ (0), which is the density of the random parameter
p. This choice is reasonable, if we consider the mapping

T (t, p) :
{

L2(Ω,F ,P) → L2(Ω,F ,P)
p 
→ y(t, p)

being well approximated by a linear mapping for early time t > 0. In this case, the distribution of y(t, ·) is
approximately a linear transformation of P0 and the Wiener-Askey expansion of y(t, ·) is supposed to converge
very fast. If t becomes large, the influence of the in general non-linear character of T becomes prominent and P0
becomes a bad approximation of the distribution of y(t, ·). Hence, convergence of the Wiener-Askey expansion
becomes very slow for increasing time t.
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5 The adaptive Stochastic Spectral Method
In this section we introduce the aSSM. At first, a response surface in the stochastic domain of the solution of
the random Van-der-Pol equation is constructed in order to compute the integrals (13). Knowing the coefficients
{qi}

m
i=0 of the stochastic spectral expansion, we compute the density of y(t j, p) at certain time steps t j, j ∈ N.

For the selection of the time steps, we consider the magnitude of the third coefficient of the truncated stochastic
spectral expansion. The density will be updated, if |q2(t j)| exceeds a prescribed tolerance TOL. By adapting
the density we are able to reduce the approximation error, which is introduced by the truncation of the stochastic
spectral expansion.

5.1 Computation of the response surface in random space

The response surface is constructed by computing solutions of the deterministic problem for fixed parameter values
pi, i = 1, ..., n. Having these data points we represent the response surface by B-splines of degree 3. This approach
is analogous to the stochastic collocation method, see [13, 12]. The response surfaces at time steps t = 0.5 and
t = 3.5 are shown in figure 2.

p

0.0827

0.0825

0.0823

1.9 2.0 2.1
p

-1.190

-1.192

-1.194

1.9 2.0 2.1

Figure 2: Response surfaces of the solution process: y(0.5, p) (left) and y(3.5, p) (right) for the parameter p ∈ [1.9,2.1].
The squares represent the deterministic solutions for parameters {1.900,1.933,1.967,2.0,2.033,2.067,2.100}.

The differentiation of the response surface in the representation of B-splines can be readily obtained, which will
be important in section 5.2, where the adaption of the density is discussed. The response surface, once computed,
serves as initial data for the computation of the response surface at the next time step. That means, that the number
of deterministic evaluations at time t j+1 is independent of the number of deterministic evaluations at time t j, so
that expensive computations of additional solutions are not needed.

5.2 Computation of the density

Having computed the response surface we can readily determine the density of the random variable y(t j, p). This
method is based on the density transformation formula

ρ ( j) :

⎧⎪⎨⎪⎩
I → R+

0

ŷ 
→ ∑
r∈R

ρ (0)(r)
∣∣∣∣ d

d p y(t j, p)
∣∣∣

p=r

∣∣∣∣−1
,

(14)

with I ⊂ R being the range of y and the sum going over all pre-images r ∈ R of y(t j, ·) = ŷ, see [7]. This formula
was first used in the context of stochastic spectral expansions by P. Vos in [8]. In figure 3 (left) we show the
response surface at time t = 5.3. The dotted line is the tangent at point (1.985, 1.991). By formula (14) we
compute the density of the solution, which is plotted in figure 3 (right). The determination of the pre-images of
ŷ ∈ [1.965, 2.009] is done by Newton’s method.

The need of the determination of the pre-images of the range of y(t, ·) is a major drawback of the adaption of the
density. In figure 4 (left) the response surface y(3.5, ·) is shown. At this time step the response surface has a local
minimum and the pre-image computation in a neighborhood E of the local extrema, at p = 1.965, is an ill-posed
problem. To handle this problem, we eliminate intervals {Ei}

q
i=1 in I, where the derivative of y with respect to the

random parameter p, falls below a prescribed threshold. Figure 4 (right) shows the response surface y(3.5, p) for
p∈ [1.961,1.970]. The area below the dotted line will be excluded in the computation of the density. We obviously
lose information by the elimination of {Ei}

q
i=1. We will address this problem in the section 6. For values in the

remaining set

Î :=
n⋃

k=1
Ik := I \

q⋃
i=1

Ei
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p
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Figure 3: Response surface of y(5.3, ·) (solid line) with respective tangent at point (1.985, 1.991) (left) and weight
function of the distribution of the random variable y(t,5.3) (right).

we determine the pre-images using Newton’s method, so that we are able to compute the conditional density with
respect to Î. Note, that the intervals {Ik}

n
k=1, together with the intervals {Ei}

q
i=1 define a partition of I. The

elimination of the intervals Ei from I is equivalent to set their masses to 0. Thereby the total mass of Î,

mT := P(Î) =
n

∑
k=1

P(Ik),

is unequal to one. We correct this discrepancy by choosing the masses P(Ik)/mT as partial masses of the sets Ik,
k = 1, ...,n.

p

-1.190

-1.192

-1.194

1.9 2.0 2.1
p

1.961 1.966 1.970

-1.1943

Figure 4: Cut-off of the area of the response surface of y(3.5, p) (solid line) where pre-image computation is an ill-posed
problem (left) and magnified to the interval [1.961, 1.970] (right).

6 Numerical results
We return to the Wiener-Askey calculus for solving random differential equations and apply it to the random Van-
der-Pol equation (12), choosing m = 2 for the length of the truncated expansion. We compute the expected value
and variance by the formulas from section 3. The results are shown in figure 5. In order to estimate accuracy,
we compute a reference solution by Monte-Carlo simulation, using 200,000 samples. The absolute error of the
variance is plotted in figure 6 (left). As we discussed in section 4, the variance approximated by Wiener-Askey
calculus loses accuracy with increasing time.

Adding more terms to the truncated series expansion does not reduce the problem. To illustrate this situation
we computed the solution by Wiener-Askey calculus with 6 terms in the truncated series expansion. Although the
magnitudes of the coefficients decrease with increasing polynomial order, the gradient of the descend becomes
larger with increasing time. The plot in figure 7 visualizes the situation. Thus adding more terms to the truncated
Wiener-Askey series is not an appropriate way to compute an accurate approximation of the solution process. The
gradient of the descent of the series coefficients qi has to be drawn into consideration as well. Instead of increasing
the length of the truncated Wiener-Askey expansion, we apply aSSM to reduce the error. The choice of initializing
values are step size h = 0.1, U [1.9,2.1] for the distribution of p, y(0, p) ≡ 0.1, ẏ(0, p) ≡ 0.0 and TOL = 10−5

(see appendix A). The associated plots of the expected value and the variance are omitted, because they differ only
slightly from figure 5. The error of the variance, computed by aSSM compared to the Monte-Carlo simulation, is
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Figure 5: Expected value (left) and variance (right) of y(t, p) in the time interval [0,60] computed by Wiener-Askey
calculus with 3 terms in the truncated expansion.

shown in figure 6 (right). It is reduced considerably in comparison to the error of the Wiener-Askey calculus, c.f.
figure 6 (left).

In figure 8 the arithmetic mean of the absolute values of the third coefficients of the truncated stochastic spectral
expansions are plotted in the interval [0,60]. Although these values are supposed to be below TOL = 10−5, they
sometimes exceed this tolerance. For example, the value 2.5 ·10−4 at time t = 16.9 is much larger than TOL. This
happens, because of the exclusion of the intervals Ei of the range of the solution y(t, ·). If Î 	= I, the density of
y(t, ·) is only approximated, so that the absolute value of the third coefficient of the truncated stochastic spectral
expansion has to capture the offset between the approximated density and the exact density. Future work will deal
with how to find a good approximation of the exact density.
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t

Figure 6: Left: absolute error of variance computed by Wiener-Askey calculus in comparison to the Monte-Carlo
reference solution using 200,000 samples. Right: the respective absolute error of aSSM.
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Figure 7: Difference max
τ≤t

{q2(τ)−q5(τ)} between the third and last coefficient of the truncated Wiener-Askey expansion

of order 5 in the time interval [0, 60].
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Figure 8: Arithmetic mean of the absolute values of the third coefficients of the truncated stochastic spectral expansions
in the aSSM.

7 Conclusions and Objectives
In this article we presented the method of adaptive stochastic spectral expansion. We have shown, that aSSM is an
adequate method to reduce the error arising in the long-term integration of the random Van-der-Pol equation. The
standard way to capture the error, increasing the length of the truncated series expansion, is often not feasible due
to the increasing computational effort and further more does not guarantee a good approximation.
aSSM is based on the adaption of the stochastic spectral expansion to the density of the solution process y(t, ·). Do-
ing so, the computational time is about one day for the problem in section 6. This is, compared to the Wiener-Askey
method, which needs only an hour, a considerable drawback. But nevertheless using Monte-Carlo simulation took
several weeks to approximate the solution with 200,000 samples. The specification of computational time are for
a Sun Fire V40z machine with 4x Dual Core AMD Opteron(tm) Processor 875 (2,2GHz).
We see, that aSSM is a very promising method for high accuracy computation of solutions of random differential
equations. The most challenging problem of this method is, that the determination of the exact density may lead
to ill-posed problems. In those cases, an alternative density has to be chosen. We propose the approximation by
elimination of the sets Ei as described in section 5.2. Of course, this is not the only possible choice. In order to
introduce an error, which is not worse than in the Wiener-Askey calculus we can chose ρ ( j) = ρ (0) whenever Î 	= I.
To find an appropriate choice of approximation in order to minimize the truncation error is up to future work.
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A The algorithm of aSSM
We introduce the algorithm of the adapted Stochastic Spectral Method (aSSM). It is based on a stochastic spectral
expansion with adapted density:

INITIALIZE

SET initial time t=0 and step size h

SET end time T

SET density d[0] of p

SET initial value y[0, p]

SET tolerance TOL

END

WHILE t < T

t = t + h

APPROXIMATE y[t, p] by B-splines

COMPUTE third coefficients w.r.t. d[t - h]

IF |q[2]| > TOL

COMPUTE density d[t] of y[t, p]

REDUCE support of density

CONSTRUCT orthogonal polynomials w.r.t. d[t]

ELSE

d[t] = d[t - h]

END

COMPUTE 1st and 2nd coefficients w.r.t. d[t]

COMPUTE expected value E[t]

COMPUTE variance V[t]

END
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