
DESIGN AND PERFORMANCE SIMULATION OF THE MATHEMATICAL MODELS IN

CLUSTER SYSTEMS– FINAL PAPER

FOR SHORT PAPER CONTRIBUTIONS

P. Kvasnica
1
, I. Kvasnica

2
,

1
 Kvasnica Alexander Dubček University of Trenčín;

2
 Department of Environment Trenčín, Slovak Republic

Corresponding Author P. Kvasnica, Alexander Dubček University of Trenčín, Inst. of Informatic, Mechatronic

Faculty, Študentská 2, 911 50 Trenčín Slovak Republic; kvasnica@tnuni.sk

Abstract. Simulation must be used to study dynamic systems. There are many methods of model-

ing systems which do not involve simulation but which involve the solution of a closed-form sys-

tem (system of linear equations). The power of simulation is that – even for easily solvable linear

systems – a uniform model execution technique can be used to solve a large variety of systems.

Another important aspect of the simulation technique is that one builds a simulation model to rep-

licate the actual system. When one uses the closed-form approach, the model is sometimes twisted

to suit the closed-form nature of the solution method rather than to accurately represent the physi-

cal system. A harmonious compromise is to tackle system modeling with a hybrid approach using

both closed-form methods and simulation. For example, computational models of this type and

resolution are currently employed for configuration analysis, aerodynamic interference analysis

and aerodynamic data generation. This evolutionary procedure is often very effective.

1 Preface
Simulation is often essential in the following cases: 1) the model is very complex with many variables and inter-

acting components; 2) the underlying variables relationships are nonlinear; 3) the model contains random vari-

ates; 4) the model output is to be visual as in a 3D computer animation [1].

The necessity of high fidelity modeling in the design process is often conflicting with the requirement of short

turn around time. A balance between modeling requirement and turn around time limitation needs to be estab-

lished at every phase in the design cycle. A way to reduce the turn around time is to use powerful parallel com-

puter systems. Traditionally, supercomputer resources have been equivalent with large cost and therefore not

widespread in industry. This started to change in the late 1990s when PC–cluster with Linux, so called Beowulf

system. When designing a PC–cluster for a specific application several design choices have to be made. The

selection of computer node configuration and interconnecting network are major factors influencing the parallel

performance [5].

The design task is to achieve an optimal integration of all components into an efficient, robust and reliable simu-

lator with high performance that can be manufactured with low technical and economical risk at an affordable

cost over the whole lifetime of the product. The product design process is in general divided into three phases

which tend to overlap in a staggered fashion.

In the conceptual design phase the simulator is defined at a system level. Many variants are studied, and the

design selected is the one that bests fulfils the specifications of the market or a customer.

In the preliminary design phase the tentatively selected concept is refined until feasibility is established, i.e.

extensive array of design sensitivities are generated, design margins, etc.

In the detailed design phase in which details of the product are elaborated, optimizations are made and data sets

are generated.

2 Computer simulation
Computer simulation is the discipline of designing a model of an actual or theoretical physical system, executing

the model on a digital computer, and analyzing the execution output. The use of simulation is an activity that is

as natural as a child who role plays. To understand reality and all of its complexity, we must build artificial ob-

jects and dynamically act out roles with them. Computer simulation is the electronic equivalent of this type of

role playing and it serves to drive synthetic environments and virtual worlds. Within the overall task of simula-

tion, there are three primary sub-fields: model design, model execution and model analysis, in Fig. 1.

Models can take many forms including declarative, functional, constraint, spatial or multimodel. The next task,

once a model has been developed, is to execute the model on a computer. You need to create a computer pro-

gram which steps through time while updating the state and event variables in your mathematical model. You

2508

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

can, for instance, leap through time using event scheduling or you can employ small time increments using time
slicing. You can also execute (i.e., simulate) the program on a massively parallel computer. This is called paral-
lel and distributed simulation [1]. For many large-scale models, this is the only feasible way of getting answers

back in a reasonable amount of time.

Figure 1: Three Sub-Fields of Computer Simulation.

Simulation of a system can be done at many different levels of fidelity. The physics-based models and output,

another may think of more abstract models which yield higher-level. Models are designed to provide answers at

a given abstraction level – the more detailed the model, the more detailed the output.

3 Performance and validity of simulation
Complexity is a measure of the resources required to analyze, simulate, and develop the model. Typically, the

performance of a simulator will increase as the complexity of a model decreases. Fox example, the speed of

simulator (measured, say, in the number of model transition executions it can do in a given time) will usually

increase as either the number of components or the number of states per component diminish. We can similarly

talk of the performance of model development or the model exploration process in terms of how it takes to de-

velop the model or how many alternatives can be examined in a given time, respectively.

Figure 2: Performance increasing while validity decreases as the resolution product trade-off

axis x means reduction in resolution and axis y means decreasing of resolution.

So on the hand, performance can be expected to improve with reduced complexity. On the other hand, reducing

the resolution simulator often entails a loss of validity of the model. Of course, has to be measured within an

experimental frame of interest. This performance trade-off is illustrated in Fig. 2, where, we see, conceptually

depicted, performance increasing while validity decreases as the resolution product is decreased. In such a situa-

tion, we can set a level of error tolerance that determines the level of error we can live with its. The complexity

reduction or performance improvement at the tolerance level is the best we can achieve. The purposes for which

the model is the being constructed or deployed should determine such threshold limits [6].

Model

Design

Model

Execution

Execution

Analysis

Conceptual model

Declarative model

Functional model

Serial algorithm

Parallel algorithm

SimCheck

I/O Analysis

Experimental design

Visualisation of Data

2509

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

However, it may well be that if we require a lower level of resolution in the model output, then the error may be

below tolerance, or even vanish, for the same level of detail included in the model. Indeed, the complexity in the

model may be much lower at the threshold of acceptability for the low-resolution frame than for its high-

resolution counterpart. Correspondingly, the fastest simulation might be much faster in low-resolution frame

than in the high-resolution one.

4 Simulation of mathematical model
This concept allows to hide implementation details parts of models (sub-models). It is then possible to easily

change the underlying implementation of sub-models without changing the other parts of the model provided

that the interface of the sub model remains intact.

The mathematical models increase of angle trajectory of aircraft and angle of climb are defined :

� � � � � � � � � �,ssWssWs BT
BT ��� �

�
�
� ������ (1)

� � � � � � � � � �,ssWssWs BT
BT ��	 �

	
�
	 ������ (2)

where

s – Laplace operator in differential equations, Wθ
δT

(s) – transfer function increment angle of trajectory of aircraft

per fuel supply, Wθ
δB

(s) – transfer function increment angle of trajectory of aircraft per elevator, Wυ
δT

(s) – trans-

fer function increment angle attack of aircraft per fuel supply, Wθ
δB

(s) – transfer function increment angle attack

of aircraft per elevator in system equations [2]. Transfer function ∆(s) of system is next :

� � � �
� � � � .0

1110

0

0

0

2
�

�
�

��

�
�
�
�
�
�

�

�
�
�
�
�
�

�

�

sasasaa
asaa

aaas

s
z

mzmzmz
V
mz

yy
V
y

xx
V
x

���

��

��

�
 (3)

Between mathematical model in equation (1) and last system valid

� � � �
� � ,13

s
s

asW TT

�
�

�� �
�

�
� (4)

where

s – Laplace operator in differential equations, aθ
δT

 – aerodynamic derivation, ∆(s) – determinant of a transfer

function, ∆13(s) – minor of the determinant a given element a13 (1-th row and 3-th column) in system equations.

Between mathematical model in equation (2) and last system valid

� � � �
� �

� �
� � ,3323

s
s

a
s
s

asW B
mz

B
y

B

�
�

�
�
�

�� ���
� (5)

where

s – Laplace operator in differential equations, ay
δB

, amz
δB

 – aerodynamic derivations, ∆(s) – determinant of a

transfer function, ∆23(s) – minor of the determinant a given element a23 (2-th row and 3-th column), ∆33(s) –

minor of the determinant a given element a33 (3-th row and 3-th column), in system equations (3).

The most used parallel systems are based on either shared memory, distributed memory or hybrid distributed-

shared memory systems. The authors published their experiences with distributed architecture (see [3]) where

divide the modeling problem among many computing nodes. Due to the fact that there is no global memory, it is

necessary to move data from one local memory to another by means of message passing.

The message passing system is replaced by OpenMP standard that supports multi-platform shared-memory par-

allel programming in C/C++. OpenMP parallelism uses the fork-join programming model, where some threads is

created by a fork operation and is joined at the end, as shown in Figure 3. Multiple threads within the same proc-

ess can be assigned to different processor or core. Threads running simultaneously on multiple processors or

cores may work concurrently to execute a parallel program. If multiple threads collaborate to execute a program,

they will share the resources, including the address space of the corresponding process.

Programmatically, OpenMP is based on compiler directives imbedded in source code which make a simple way

to maintain a single code for the sequential and parallel version of the application due to the existence of condi-

tional compilation.

2510

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

Figure 3: OpenMP: Fork-Join programming model.

5 Performance and measurement
The performance evaluation is performed with the application code using inviscid flow modeling. Computational

models of this type and resolution are currently employed for configuration analysis, aerodynamic interference

analysis and aerodynamic data generation.

The parallel performance is analyzed in terms of computational performance and parallel efficiency on four

processors cluster ‘EvaOne‘. The performance is measured on the entire code (excluding I/O), rather than de-

tailed instrumentation of selected code sections. This is done by collecting the number of floating point opera-

tions through hardware counters and measuring the wall clock time for the parallel runs.

For the type of algorithm used in this study, the load balancing and the communication overhead items are the

most crucial to deal with to obtain good parallel performance. In this example the mean transfer time for mes-

sages is affected by latency already at two Intel Core Extreme QX6800 2.93GHz, 1066HHz, 8MB L2 quad core

processors. Comparing the performance on clusters with different processors clearly verifies this. Clusters with

low latency networks deliver good parallel efficiency also for a large number of processors.

In comparison, clusters with Gigabit Ethernet show a decrease in parallel efficiency already after 2 processors.

With 2 processors on Intel© Core2 Quad QX6800 a total performance of 187,5 GFlops is achieved and using 2

processors on Intel© Core2 Quad QX6700 a performance of 170,2 GFlops is reached [4]. In comparison the

theoretical processor speed only differs by 10 % and the remaining difference is mainly due to larger 2nd level

cache on the Intel Core Extreme QX6800 system. Using a system that delivers more than 170 GFlops in applica-

tion performance clearly affects the turn around time.

6 Conclusion
When the problem is parallelized over more processors two parts will influence the performance results more

than the other. Firstly the computation to communication ratio will decrease as the partitioning introduces new

internal boundaries between domains. Both the total amount of data communicated as well as the number of

messages increase. The communication pattern becomes more fragmented and the mean message size decreases.

Secondly, when more processors are added the total amount of fast cache memory also increases. This means

that a larger part of the total problem will reside in the cache with a subsequent performance gain. This is called

cache effect and can result in a super linear speedup, i.e. higher speedup numbers than number of processors.

In conclusion, using this approach a manufacturer of industrial automated systems does not need the plant (phys-

ical part of the machine). The design and simulation network mathematic model was make on cluster system. In

consequence, this approach allows to reduce the times of flight simulator.

7 References
[1] Fishwick, P.: What is simulation? Why do simulation?. [online]. 19. October 1995. [cit. 2008-09-09]. On

internet: <http://www.cis.ufl.edu/~fishwick/introsim/paper.html>.

[2] Krasovskij, A., A.: Sistemy avtomaticeskogo upravlenja poletom i ich analiticeskoje konstruirovanie.

Nauka, Moskva 1980, pp. 589.

[3] Kvasnica, P., Kvasnica, I.: Simulation of Flying Parallel Computing in Computer. In: International Review

of Aerospace Engineering (IREASE), 2008, in printing.

[4] Processors – Intel @ microprocessor export compliance metrics [online]. 19. November 2008. [cit. 2008-

12-11]. On internet: <http://www.intel/com/support/processors/sb/cs-023143.htm>.

[5] Sillén, M.: Application of Parallel Computers to Enhance the Flow Modelling Capability in Aircraft De-
sign. In: Department of Mechanical Engineering, Linköpings universitet, Sweden ,2006.

[6] Zeigler, B. P., Praehofer, H, Kim, T., G.: Theory of Modeling an Simulation. Second Edition, Academic

Press, San Diego, USA, 2000.

2511

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

