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Abstract. The paper discusses applying Taguchi Design of Experiments approach for robust de-

sign i.e. selection of suitable parameters for various segments of fault detection and isolation (FDI) 

systems, to achieve better operation, e.g. less false alarms, quick response and ability to handle 

small faults (sensor bias, drift) under close loop conditions. Adequate system model should be re-

liable and exact to produce minimum number of false alarms and properly set up FDI scheme is 

important to operate under stable system control loop. In case of neural network models we try to 

find optimal structure and parameters of an auto-associate neural network dynamic model. In case 

of statistical multivariate methods such as principle components analysis, the number of principle 

components to be retained and not losing important properties can be a very subjective decision. In 

the field of observer based FDI, parameters can be set up to achieve better reconstruction of sys-

tem outputs, thus less false alarms is produced, etc. Taguchi DoE of a neural network model will 

be discussed by simulations and real-time laboratory model results. 

1 Introduction 
Fault detection and isolation systems (FDI) are becoming widely used in many modern systems mainly due to 

evolved industrial IT equipment, which is raising the level of automation in various technical systems. First 

implementations of such systems were realized in economically justified systems e.g. nuclear power-plants, 

commercial airplanes, etc., however for smaller systems an economic perspective prevailed in order to prevent 

structural damages, plant down-times, predict maintenance intervals, etc. FDI systems offer operator support in 

decision making especially when quick reaction-time is expected to quickly deal with the issue causing unpre-

dicted behaviour of the process. Poorly designed FDI system can cause more damage due to a bad model of the 

process or detection logic, which produces many false alarms and reduces the credibility of the FDI scheme [1]. 

FDI system is treated as a parallel system next to the monitoring (SCADA) platform therefore it should be im-

plemented directly inside the system to be able to quickly detect process deviations. The procedure is detection, 

isolation and diagnosis, where a model of the process (or part of the system) can be used for refer-

ence/comparison purposes. Detection of faults can be difficult due to operating control loops, poor models, bad 

thresholds, therefore any badly designed part of the FDI scheme contributes to a higher false alarm rate, hence 

misleading the operator at his work. To achieve minimum number of false alarms, first a good model of the 

system is needed. Nonlinearities in the system are important to capture nonlinear properties of the system that is 

why a derivation of nonlinear model is preferred. After decades of model-based FDI approaches [2] including 

transparent first principles approach, statistical and data-driven approaches became possible for implementation 

[3]. Many of these uses parts of the data acquisition systems (SCADA, MES databases) for FDI and data proc-

essing e.g. principle components or neural networks, which can be put into practice, but need to be properly set 

up to achieve desired performance. The difficulty still resides in obtaining all the important data from the system 

to build the adequate model that can be used for FDI purposes. As nonlinear models are preferred, a Taguchi 

robust design of nonlinear principle components was used and realized by artificial auto-associative neural net-

work (AANN) structure [4]. The structure is very useful and can be used in many modelling and FDI task [5]. In 

classic approach the structure and parameters of the network can be selected by trial and error approach where 

best results are considered for realization. On the other hand Taguchi’s robust design technique uses Design of 

Experiments (DoE) approach upon which the best case parameters can be selected. The emphasis is on parame-

ters that mostly affect the operation of the AANN especially (number of hidden neurons in encoding/decoding 

layer, number of neurons in bottle-neck layer, type of neuron’s activation function, training method, etc). The 

Taguchi design [6] can be used to solve many optimization tasks, among others it has been shown it can improve 

industrial production procedures, be used for controller design [7], artificial neural networks (ANN) design, etc.  

2 Auto-associative neural networks 
In modern monitoring systems (SCADA, MES), databases can be used to obtain a proper model of the process 

behaviour, directly out of the recorded history. To be able to model the nonlinear properties hidden in the data, a 

nonlinear method should be used. Among many data-driven methods, statistical methods have many benefits 

nevertheless neural networks remain their main competition. In 1991, Kramer [2] presented nonlinear principle 
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component approach where he proposed an auto-associative neural structure along with recommendations how 

to select optimal number of mapping layers, by using final prediction error and information theoretic criterion. 

Such one-factor representation does not take all the key factors under consideration therefore also number of 

bottleneck nodes, transfer function, learning algorithm were included into design. To perform NLPCA as de-

scribed by Kramer, the AANN in Fig. 1 shows the structure which contains 3 hidden layers of neurons between 

the input and output layers of variables. 

Figure 1. The structure of Autoassociative neural network 

Next to the input layer there is a mapping (encoding) layer, followed by a bottleneck layer, which is then fol-

lowed by a demapping (decoding) layer. A nonlinear function maps from the higher dimension input space to the 

lower dimension bottleneck space, followed by an inverse transform mapping from the bottleneck space back to 

the original space represented by the outputs. They are to be close to the inputs as possible by minimizing the 

cost function. Desired mean square error between the neural network output and the original data is thus mini-

mized. The choice of the number of hidden layers in an encoding and decoding layer follows a general principle 

of parsimony, since more hidden layers increase the nonlinear modelling capability of the network, on the other 

hand that could also lead to over-fitted solutions. According to Kramer, a procedure and recommendations for 

designing the AANN structure upon the problem specifics, is given. He used a simple approach where he re-

stricted the number of weight in the network to a fraction of the number of constraints imposed by the data set. 

The number of adjustable parameters in the network is defined by eq. 1. left: 

� �� �1 21n m f M M m f� � � � � �
            1 2 ( ) /( 1)M M m n f m f�   	 � �

 (1) 

where M1 and M2 are the number of nodes in the mapping and demapping layers, respectively, m is the number 

of nodes in the input and output layers, and f is the number of nodes in the bottleneck layer. The number of ad-

justable parameters is implying the right inequality. If the number of mapping and demapping nodes allowed by 

these inequalities is less than or equal to f, then there is not enough data to support extraction of f nonlinear fac-

tors, since the bottleneck by design occurs in the second hidden layer of the combined network. Instead, of 

Kramer’s approach, a Taguchi DoE was tested where experimental results determine which combination of the 

structure and parameter settings are optimal for desired study case.  

3 Taguchi Design of Experiments approach 

Figure 2. Laboratory hydraulic model (left) and fault-free operation (right) 
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The laboratory model (Fig. 2) has four system variables which are lead to the neural network input layer and the 

number of bottleneck layer neurons was selected as m-1 (one less than the input layer). Nonlinear transfer func-

tion and Levenberg-Marquardt back-propagation algorithm was used for the training with 5000 training samples 

that were adequately pre-processed. According to Kramer’s definition, the number of needed neurons in map-

ping layer should not be less than 7 (the error is approximately constant, Table 1). Well, to be able to reduce the 

number of mapping nodes if possible, a Taguchi design was proposed.  

Table 1. Results of one-factor representation 

No of map. 
nodes

adjustment
parameters Error FPE AIC 

1 23 16663 150,9336 2,4569 

2 39 1290 6,8928 1,1165 

3 55 410 1,5495 0,4683 

4 71 655 1,9231 0,5621 

5 87 42 0,1015 -0,8468 

6 103 37 0,0750 -1,0743 

7 119 25 0,0444 -1,0743 

8 135 31 0,0486 -1,0348 

9 151 24 0,0335 -1,1971 

10 167 7 0,0097 -1,7350 

Table 2. Planned variations of parameters and respective 

levels 

Factor A: number of hidden neurons in encoding/decoding 
layer; Factor B: number of neurons in bottle-neck layer; 
Factor C: transfer function; Factor D: back-propagation 
learning method: LM (Levenberg-Marquardt), GD (gradient 
descent), GDX (momentum gradient descent with adaptation); 
Factor E: size of learning data against size of complete data 

Factor Level 1 Level 2 Level 3 
A 5 10 20 

B 1 2 3 

C Lin Sig Tanh 

D LM GD GDX 

E 10% 30% 50% 

In the Table 2, variations of process variables were planned to conduct by by orthogonal array L27 (3
13). If a 

classic design of experiments (trial-and-error) would be used, 53 experiments would be necessary to conduct. To 

complete the task by Taguchi DoE, only 27 experiments were conducted a few times (3x27=81 experiments) in 

random order to achieve mean values of respective results. It is a subjective decision or case dependent how 

factors are entered into OA, as this defines the ability to detect correlation (interaction) between variables.  

After conducting experiments, robustness measure in the form of Signal-to-Noise (S/N) ratio was calculated. 

Since a good process model is needed, neural network with smaller training error is preferred (S/N type “Smaller 

is better”, [6]). Fig. 3 left shows training procedures (experiments) and calculation of S/N ratios, upon which best 

parameter selection can be achieved. Further analysis of cross-correlation and interaction between process vari-

ables is possible (ANOVA) and it depends how the data was inserted into OA (adequate columns). 

   
Figure 3. Results of AANN training according to planned experiments (left) and calculated S/N ratios (right) 

Best result is thus achieved with combination of 5 mapping nodes, 3 bottleneck nodes, hyperbolic tangent sig-

moid transfer function and Levenberg-Marquardt learning algorithm. AANN model outputs achieved by Kramer 

and Taguchi DoE are presented in Fig. 4., where a fault-free operation is simulated (level in the first tank). 

Figure 4. AANN trained model output by Kramer (left) and by Taguchi DoE (right) 
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4 Conclusion
The structure 4-5-3-5-4 for the AANN models was used to obtain faulty and fault-free regime models of the 

process. FDI scheme was realized in Matlab/ Simulink, where residual signals were generated according to de-

viation between measured and AANN outputs with a threshold function to detect faults. The performance was 

evaluated by several fault cases introduced to the three-tank laboratory model; displacement of the level sensors 

in the tanks and pipeline of the pumps can be partially clogged (closing the inlet valves). Additive faults were 

abruptly brought about.  
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Figure 4. Detection of sensor bias fault in the second tank (level measurement)

By properly setting the isolation parameters shift detection on the level sensors was achieved capable of detect-

ing small faults e.g. 4% variation of the measured signal (Fig. 5). Also a test for sensor drift was conducted, 

where it proved that drifts could be detected even under close loop conditions. The noise was approximately 2-

3%, thus measurement signals were slightly filtered to improve detection results.  

Many factors such as noise and unpredicted disturbances on measured signals can always produce unwanted 

responses in the system however sensitivity, reliability and accuracy of the FDI system can be greatly improved 

if suitable design is used. By applying Taguchi’s robust design to various FDI system components (model, con-

troller) we try to properly set up FDI scheme that all predicted faults can be detected. The same technique can be 

used in many different optimization or design tasks therefore an on-going research will discuss also the selection 

of parameters for optimal observer based FDI scheme, controller design, selection of the number of principle 

components in a classic principal component analysis optimization task, etc.  
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