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Abstract. One considers discrete Calderon-Zygmnd operators constructed on given continual kernel

for uniform lattice points in m-dimensional space. It’s shown the spectrums of continual and discrete

Calderon-Zygmund operators are the same in square integrable function spaces and don’t depend on

lattice parameter.

1 Calderon-Zygmund operators
Let K(x) be singular Calderon-Zygmund kernel, i.e. the function defined on Rm \{0} and homogeneous of order

−m and infinitely differentiable with vanishing mean value on unit sphere Sm−1∫
Sm−1

K(ω)dω = 0.

Given kernel K(x) construct continual (classical) Calderon-Zygmund operator

(Ku)(x) = v.p.

∫
Rm

K(x− y)u(y)dy =

= lim
ε→0

N→+∞

∫
ε<|x−y|<N

K(x− y)dy, x ∈ Rm. (1)

For such operators the boundedness theorem in Lp(Rm), 1 < p < +∞, were obtained by Calderon-Zygmund [1].

For the operator K one defines its symbol σ(ξ ), ξ ∈ Sm−1, as Fourier transform in principal value sense of kernel

K(x) :

σ(ξ ) = lim
ε→0

N→+∞

∫
ε<|x|<N

K(x)eix·ξ dx (2)

x ·ξ = x1ξ1 + . . .+ xmξm denotes inner product.

Its is well-known spectra of operator K coincides with image of its symbol σ(ξ ).

Indeed, if we apply the Fourier transform (2) to singular convolution operator (1) in L2(Rm)- space, then we obtain

multiplication operator instead of convolution ones (multiplication by its symbol), and the spectra for such operator

is easily shown. Obviously, the analogue situation we must obtain in discrete case.

2 Discrete variant
Let Zm

h – lattice in Rm with uniform step h for each variable. We’ll define "lattice kernel" uh(x̃), x̃ ∈ Zm
h , and given

kernel K(x) we”ll construct "lattice kernel" Kh(x̃) restricting K(x) on Zm
h \ {0}, and define discrete Calderon-

Zygmund operator

(Khuh)(x̃) = lim
N→+∞ ∑

ỹ∈QN
h \{0}

Kh(x̃− ỹ)uh(ỹ)hm (3)

where QN
h is a "discrete cube" of lattice Zm

h with side Nh.

The symbol σh(ξ ) of such operator can be treated as multivariable discrete Fourier transform [2] of its kernel Kh(x̃)
in principal value sense

σh(ξ ) = lim
N→+∞ ∑

ỹ∈QN
h \{0}

eix̃·ξ Kh(x̃)hm. (4)

Evidently, the symbol σh(ξ ) is defined and continuous on
[−π

h , π
h
]m \ {0} and periodical function on Rm. Let’s

denote by L2(Zm
h ) the discrete analogue of L2(Rm). Applying the Fourier transform (4) to operator (3) leads to

multiplication operator

ũh(ξ ) �−→ σh(ξ )ũh(ξ ), (5)
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in Fourier images, and the spectra of operator (3) acting L2(Zm
h )→ L2(Rm) (or operator (5) acting L2(Qh)→

L2(Qh), where Qh =
[−π

h , π
h
]m

) will coincide with image σh(ξ ).

What we can say if h tends to 0 ? It’s fully evidently that Qh \{0} will transform to Rm \{0}, but what about

σh(ξ )? No less evidently that

σh(ξ )→ σ(ξ ) (6)

in pointwise convergence sense.

Some simple consideration can help us explain (6). Take u ∈ S(Rm) (Schwartz class of infinitely differentiable

rapidly decreasing at infinity functions) and write (1) in Fourier images

σ(ξ )ũ(ξ ).

"Discrete variant" of such expression to "lattice function" uh(x̃) constructing on u(x) leads to

σh(ξ )ũh(ξ ).

So, as (1) and (3) under consideration will be bounded, then we have ∃c > 0,

|σh(ξ )| ≤ c, |(̃u)(ξ )| ≤ c.

If so, we consider the difference

(σ(ξ )−σh(ξ ))ũ(ξ ) =

= (σ(ξ )ũ(ξ )−σh(ξ )ũ(ξ ))−σh(ξ )(ũ(ξ )− ũh(ξ )),

which have tend to 0 as h→ 0, because σhuh and ũh are "cubature formulas" for corresponding integrals (if they

exist).

So, (6) holds exactly.

Let Zm be "integer number" lattice in Rm, Q = [−π,π] be corresponding "unit" cube in dual space in Fourier sense.

One of easily seen properties of symbol of operator (3) is the following.

Proposition 1. σ1(hξ ) = σh(ξ ).

Let’s note that σ1 is defined on Q\{0} (period 2π,) and σh is defined on Qh \{0} (period 2πh=1).

Further, because σh isn’t defined at 0, but under ξ �= 0 the limit σh(ξ ) exists as h→ 0, then, it follows the limit

depends on direction of vector ξ �= 0 in which the limit exists. Thus, this direction can be determined by point of

unit sphere Sm−1 in which this radius-vector ξ pierses the Sm−1. If one fixes point ξ , then has

σ(ξ ) = lim
h→0

σh(ξ ) = lim
h→0

σ1(hξ ),

and it follows

Proposition 2. For ∀ξ �= 0 the σh(ξ ) doesn’t depend on h.

The last may be useful for justifying some approximate methods for solution of multidimensional singular integral

equations with Calderon-Zygmund operators. Bur we have take into account the hard works related to change of

"infinite discrete" object by "finite discrete" ones; here are different possibilities, and the author thinks to conside

their separately.

3 Conclusion
At large author interested the relations between four (possible philosophical) things, but he is a mathematician in

education, he has tried to express some (very simple things) in mathematical language. These philosophical points

are the following:

a) continuous + finite (integral);

b) continuous + infinite (improper integral);

c) discrete + finite (sum);

d) discrete + infinite (series).

So, particularly, the classical quadrature (cubature) formulas describe the limit from c) to a) with corresponding

error estimate.

Unfortunately, it is very little, as all point of views lead to the same result, but here I would like to extract "the

mathematical situation", in which b) and d) will give the same.
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