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Abstract. A common feature of basaltic volcanoes is that they can exhibit periods of persistent

degassing, which can last from years to millennia (e.g. Stromboli, Izu-Oshima). During these degassing

periods there is a constant flux of gas released to the atmosphere with relatively negligible volumes of

magma being discharged. Some mechanism must be at work within the magmatic plumbing system

which transports a steady supply of volcanic gases from deep below the earth’s surface to the volcanic

vent and, in particular, sufficient heat must also be transported to offset losses to the surrounding rock

and prevent the system from closing. A deep magma chamber is the source of both gas and heat and

we study a model whereby convection in the volcanic conduit keeps the system open and active with a

continuous supply of fresh hot gas-rich magma from the underlying chamber.

1 Introduction
When a volatile-rich magma ascends from a magma chamber towards the earth’s surface, a decrease in hydrostatic

pressure causes gas exsolution and bubble formation. The bubbly mixture will then rise buoyantly to the surface

and these gases will be released into the atmosphere. The degassed magma will now be more dense than the

nondegassed magma and as a result will descend back to the chamber along the conduit walls and displace the

gas-rich magma there. This creates a convective circulation within the conduit driven by the density difference

between the degassed and nondegassed magmas. This proposed mechanism of continuous passive degassing has

been considered in many studies in the literature, see for example [2], [3] and [4]. A simple model for basaltic

magmas consists of Poiseuille flow in a concentric double walled pipe, where nondegassed magma ascends in the

center and heavier degassed magma descends in the outer annulus and the flow is driven by the density difference

between the ascending and descending magmas. These conduit convection models are simplistic and ignore the

effects of bubbles, simply assuming a change in density when gases are released at the top of the conduit. Bubbles

will cause buoyancy effects to increase as the magma ascends and the resultant density difference between degassed

and nondegassed magma is in actuality a function of height above the chamber. Increased buoyancy, in turn, leads

to an increased magma ascent velocity. A particularly important consequence of conduit convection models is the

transport of heat from the chamber to the conduit which can prevent the magma from cooling by offsetting the heat

loss to the surrounding rock en route to the surface. It was shown in [3] that the temperature decrease in the magma

due to conductive heat loss to the conduit walls is negligible due to the continued supply of fresh hot magma from

the chamber. Expanding the idea of these conduit convection models, we construct a comprehensive two-phase

flow theory to examine the process of convective overturn in a conduit.

2 A Two-Fluid Model for Flow in a Conduit
We consider a two-dimensional model for the gas-liquid mixture in the conduit. For simplicity, we assume the

presence of a single gas species, which we take to be water vapor. Equations for the conservation of mass and

momentum of the homogeneous (single velocity) mixture in the conduit are

ρt +∇.(ρu) = 0, (1)

ρ(ut +u.∇u) =−∇p−gρk+η∇2u, (2)

where we assume a single pressure such that pg = pl = p, k is the unit vector in the vertical direction and η is the

viscosity of the mixture. The density of the gas-liquid mixture is given by

ρ = αρg +(1−α)ρl , (3)

where ρg and ρl are the gas and liquid densities respectively and α is the volume fraction of gas. We assume an

ideal gas such that

ρg =
Mp
RT

, (4)

where M and R are the molar mass and universal gas constant for H2O respectively. We adopt a Boussinesq

approach and define the liquid density as a function of the temperature by

ρl = ρ̄l [1−β (T − T̄ )], (5)
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where ρ̄l is the density of the melt at temperature T̄ and β is the coefficient of thermal expansion. Now, in addition

to the gas phase, H2O can be present dissolved in the liquid phase. If c denotes the mass fraction of dissolved water

then conservation of the total mass of H2O (both in gas form and dissolved in the melt) yields a third conservation

equation

D
Dt

[αρg + c(1−α)ρl ] =−[αρg + c(1−α)ρl ]∇.u, (6)

where D
Dt = ∂

∂ t +u.∇. It can be easily shown, using (1), that the total mass of the silicate melt (1− c)(1−α)ρl is

automatically conserved. Deep below the earth’s surface pressures are sufficiently high that all gases are dissolved

in the liquid melt (i.e. α = 0) but as the magma ascends towards the earth’s surface and the hydrostatic pressure

decreases the magma becomes supersaturated in volatiles and bubbles will start to nucleate, so that c will decrease

from its initial value c|α=0 = c0. We assume that an equilibrium exists between the amount of H2O dissolved in

the melt and the surrounding pressure which satisfies the experimental relationship

c = K
√

p, (7)

where K is a solubility constant depending on magma composition. Following (5) the density of the liquid melt

varies with temperature, however, at a given temperature the density ρ̄l will depend on the quantity of dissolved

gases via

ρ̄l =
ρwρm

ρw− c(ρw−ρm)
, (8)

where ρm is the density of the silicate melt and ρw is the density of water. Finally, conservation of energy is given

by

ρ
Dh
Dt
− Dp

Dt
= kT ∇2T, (9)

where the mixture enthalpy is

ρh = αρghg +(1−α)ρlhl , (10)

and the individual phase enthalpies are given by

hg = h̄g + cpg(T − T̄ ), (11)

hl = h̄l + cpl (T − T̄ ), (12)

such that hg = h̄g and hl = h̄l when T = T̄ , cpg and cpl are the gas and liquid specific heats at constant pressure and

kT is the thermal conductivity of the mixture. Equations (1)-(12) give us twelve equations for the twelve unknowns

u, ρ , p, α , ρg, ρl , T , c, ρ̄l , h, hg and hl .

2.1 A Simplified Model

The mass fraction of water dissolved in the magma is typically small (c0 ≈ 0.05) and if we also assume that density

variations are primarily driven by gas exsolution and not thermal effects we can write the mixture density as

ρ ≈ ρm−αΔρ ,

where Δρ = ρm−ρg. Following a standard Boussinesq-type approach, we further assume that buoyancy effects

due to gas exsolution will only be important in the gravity term of the momentum equation and our model can be

concatenated into four equations for the four unknowns u, p, T and α:

∇.u = 0,

ρm(ut +u.∇u) =−∇(p+gρmz)+αΔρgk+η∇2u,

T (α, p) =
αMp

Rρm(c0−K√p)
,

ρgL
Dα
Dt

+α(1−α)L
Dρg

Dt
+[αρgcpg +(1−α)ρmcpl ]

DT
Dt

=
Dp
Dt

+ kT ∇2T,

where L is the latent heat of exsolution. Dimensionless variables are defined by

∇ =
1

d
∇′, u =

κl
d

u′, t =
d2

κl
t ′, z = dz′, ρg =

Mρmgl
RTc

ρ
′
g,
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T = Ta +ΔT θ , p = pa +ρmg(l− z)+
ηκl
d2

P

where d and l are the radius and length of the conduit respectively, Ta and Tc are the surface and chamber temper-

atures such that ΔT = Tc−Ta, κl = kT
ρmcpl

is the thermal diffusivity of the mixture and pa is atmospheric pressure.

Neglecting terms that are relatively small, and dropping primes, yields the simplified model

∇.u = 0, (13)

1

σ
Du
Dt

=−∇P+αRk+∇2u, (14)

Dθ
Dt

= ∇2θ , (15)

where σ and R are the Prandtl and Rayleigh numbers respectively. The void fraction and dimensionless temperature

are related by

α =
[1−λ (1−θ)][1−μ

√
1− εz]

Γ(1− εz)
, (16)

where ε = d
l , λ = ΔT

Tc
, μ = K

√
ρmgl

c0
and Γ = Mgl

c0RTc
. The model has thus been reduced to three equations for u, P and

θ . Equations (13)-(15) is a standard thermal convection model with the void fraction replacing the temperature as

the driving force. However, we can use (16) to rewrite the momentum equation in the more familiar form

1

σ
Du
Dt

=−∇P̃+θ R̃k+∇2u, (17)

where P̃ and R̃ are a modified pressure and Rayleigh number.

3 Velocity Profile
The problem is symmetric about the centerline of the conduit, denoted by x = 0, so it is sufficient to analyze the re-

gion between the centerline and the conduit wall located at x = 1, Figure 1. We assume that the upwelling (w > 0)

region is contained in 0 ≤ x < s and the downwelling (w < 0) region in s < x < 1 and s can be determined by

conserving the volume of the mixture. We require w = 0 at the interface between the two regions, i.e. w(s) = 0.

We further assume that the ascending gas-rich magma being transported from the chamber is at the chamber tem-

x=0 x=1x=s

w=0wx=0

z=0

z=1

w>0 w<0

w=0

θ=0

θ=1

upwelling
region

downwelling
region

Figure 1: Conduit schematic

perature θ = 1 and the descending degassed magma is at the surface temperature θ = 0, with a thermal boundary

layer separating the two regions. To ensure symmetry across the centerline we set ∂w
∂x = 0 at x = 0. The no-slip

condition at the conduit wall x = 1 implies w = 0 there. We analyze the basic state when the system has reached

a steady state and u = (0,w(x)). Mass conservation (13) is thus automatically satisfied. If follows from (17) that

P̃ = P̃(z) and

d2w
dx2

=
dP̃
dz
− R̃θ .

This can be solved in both the upwelling(θ = 1) and downwelling (θ = 0) regions to obtain

w =
{

1
2
(x2− s2)(P̃z− R̃) for 0≤ x≤ s

1
2
P̃z[x2− x(1+ s)+ s] for s≤ x≤ 1 .
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Now to ensure that the derivative of w is continuous across the interface x = s we require

P̃z =
2sR̃
1+ s

,

and this yields dw
dx |x=s = − s(1−s)

(1+s) R̃ < 0 as expected. The position of the upwelling-downwelling interface can be

easily obtained by conserving the volume of the mixture via∫ x=1

x=0
w dx = 0.

4 Thermal Boundary Layer
The next step is to consider the region around x = s where the temperature undergoes a rapid change from θ = 1 to

θ = 0. We make the standard boundary layer assumption that heat diffusion in the lateral direction is more rapid

that that in the vertical direction and rescale z = 1
ε Z, where ε � 1. The heat equation (15) now becomes

εw
∂θ
∂Z

=
∂ 2θ
∂x2

,

and w ∼ R̃� 1. In the boundary layer region we define x = s + δX , where δ is the width of the layer, and the

matching boundary conditions

θ → 0 as X →+∞, θ → 1 as X →−∞,

must be satisfied. Defining the shock width as δ = (εR̃)−
1
3 , and letting ξ = 1+s

s(1−s)Z for convenience, we rewrite

the thermal boundary layer problem as

−X
∂θ
∂ξ

=
∂ 2θ
∂X2

, (18)

with boundary conditions

θ = 0 when X > 0,ξ = 1 and as X →+∞, (19)

θ = 1 when X < 0,ξ = 0 and as X →−∞, (20)

where, for convenience, the rescalings ξ → γξ and X → γ
1
3 X have been applied. An identical problem to that

presented by (18)-(20) was solved in [1] in the context of a salt-finger problem. The heat fluxes at the upwelling-

downwelling interface can be obtained by solving the problem in both regions separately and ensuring the two

solutions match up at the interface.

5 Summary and Future Work
We have presented a two-fluid model for convection in a volcanic conduit. The model reduces to a standard

thermal convection problem with the gas volume fraction providing the driving force. An analysis of a basic

flow with vertical acceleration alone yields a thermal boundary layer problem identical to a problem in salt-finger

analysis presented in [1]. The next step in our analysis is to consider the viscous boundary layer at the upwelling-

downwelling interface where the acceleration terms in (17) are important. We also intend to investigate the change

in viscosity between the degassed and nondegassed magmas and compare our results with observed gas fluxes at

Stromboli volcano.
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