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Abstract. In this work, a magnetic levitation system is modeled with its hysteresis characteristic and
a nonlinear controller is developed that the system output tracks a desired reference input. Hysteresis
nonlinearity of the system which arises from ferromagnetic material in electromagnet is modeled by
using Duhem model. An equivalent linear system is obtained by a nonlinear controller and the linear
system is stabilized with pole placement. The simulation results show the system converges to the
desired reference input.

1 Introduction
Magnetic levitation systems are nonlinear and hysteretic systems which have many application area such as high
speed trains, frictionless bearing and vibration isolation system, see [1, 2]. Control problem of these systems is
very important since magnetic levitation systems are nonlinear and open-loop unstable. Therefore, a lot of works
have been reported to control magnetic levitation system in recent years. Most of these researches are based
on linearized model around an operating point, see [3, 4]. However, deviating from operating point can cause
deterioration of system behavior. Therefore, it is necessary to design nonlinear controller for a large domain of
stability. Besides, the losing of energy due to hysteretic feature of the system, such as the heating of electromagnet
or the change of inductance should be considered.

Feedback linearization is commonly used method to developed nonlinear controller for magnetic levitation sys-
tems, see [8, 9, 10]. Furthermore, sliding mode control is a nonlinear controller design approach for these kinds
of systems, see [5, 6, 7]. However, these works ignored hysteresis effects in magnetic levitation systems. So far,
very little work has been published that controls magnetic levitation system with effecting of hysteresis feature.
For example, magnetic levitation system has been modeled with Preisach model of hysteresis and the inverse of
hysteresis has been applied to the system for its compensation in [11]. Moreover, magnetic levitation system has
been modeled with input backlash, and the smooth adaptive inverse of backlash has been applied to controller
design with backstepping approach in [12].

In this paper, the mathematical model of a magnetic levitation system is given by considering its hysteresis feature.
Duhem model is used to model hysteresis relation between the magnetic field and the magnetic induction of
the system. The obtained system is nonsmooth because of hysteresis is a nonsmooth nonlinearity. Therefore, a
derivative definition of Duhem hysteresis is given with its Lipschitz property. Then the system is controlled with
feedback linearization method which is combined with pole placement technique. Finally, simulation results of the
system are given and it is shown that the system tracks the desired reference input.

2 Modeling of Magnetic Levitation Systems with Hysteresis
In this section, mathematical model of magnetic levitation system is given. Figure 1 demonstrates the working
principle of magnetic levitation systems. The system consists of an electromagnet and a ferromagnetic ball. The
ball is levitated by a magnetic force which is produced by the electromagnet. Control purpose of the system is to
tune voltage to reach desired equilibrium position.

The electrical component of the system is

u(t) = Ri(t)+L
di(t)

dt
, (1)

where u is the controlled voltage applied to the electromagnet, i is produced current, R is coil resistance and L is
inductance of the electromagnet. The mechanical component of the system is

m
d2y(t)

dt2 = Fm −mg, (2)

where m is mass of the ball, g is gravity acceleration, y is the distance between the ball and the electromagnet, and
Fm is the magnetic force. The electromagnetic force is

Fm =
A

2μ0

(
B
y

)2
, (3)
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Figure 1: Magnetic levitation system

where A is sectional area of the electromagnet, μ0 is the magnetic permeability of air, B is inductance of the
electromagnet which depends on magnetic field H. The magnetic field is calculated by current i and turn number
of the coil N;

H = Ni. (4)

Relation between B and H is a hysteresis which is denoted by Φ

B = μ0Φ(H) . (5)

Substituting (5) to (3) we obtain

Fm = K
(

Φ(H)

y

)2
, K =

Aμ0
2

. (6)

2.1 Duhem Model of Hysteresis

Hysteresis is a nonlinear relation between input and output functions which can be mathematically represented
by causal and rate independent operator Φ. There are different kinds of hysteresis models, for example Relay,
Stop, Play, Duhem, Preisach and Prandtl which are commonly used hysteresis models in the literature. In this
work, hysteresis properties of the system is defined by Duhem model which is efficient to model electromagnetic
hysteresis, see [13, 14, 15, 16]. Duhem model is based on the property that the output of the model changes
its character when the input changes its direction, see [17]. This model is defined by the following differential
equation

dB
dt

= α [ζ (H)−B]

∣∣∣∣dH
dt

∣∣∣∣+η (H)
dH
dt

, (7)

where α is a constant which gives hysteresis width, ζ (·) and η (·) are some functions that satisfy given condition
in [13, 14]. Duhem hysteresis is Lipschitz continuous model and it is differentiable except the derivative of its
input is zero, see [18].

3 Nonlinear Control Design of Magnetic Levitation Systems
Feedback linearization is a method that transforms original system into a simpler equivalent system. It is usually
used for obtaining a linear or partially linear system to implement linear control law, see [19]. In this work, the
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Figure 2: Block diagram of controller design

system is controlled by feedback linearization technique combined with pole placement. Block diagram of the
controlled system is given in Figure 2.

Using the following change of variables

x1 = H, x2 = y, x3 = ẏ, (8)

the state space presentation is obtained as

ẋ1 = −
R
L

x1 +
N
L

u, ẋ2 = x3, ẋ3 =
K
m

(
Φ(x1)

x2

)2
−g. (9)

The output of the system y is position of the ball, so we can write the system in the following format:

ẋ = f (x)+g(x)u, y = h(x) , (10)

where

f (x) =
[

f1 f2 f3
]T

=

⎡⎢⎣ −R
L x1
x3

K
m

(
Φ(x1)

x2

)2
−g

⎤⎥⎦ , (11)

g(x) =
[

g1 g2 g3
]T

=

⎡⎣ N
L
0
0

⎤⎦ , (12)

h(x) = x2 (13)

are functions of x =
[

x1 x2 x3
]T (T denotes transpose of the matrix). To apply feedback linearization method

f , g and h functions have to be differentiable. However, in (11) f is not differentiable because of hysteresis
nonlinearity. Using Lipschitz continuity of Duhem model, we can define derivative of the model as

dΦ(x1)

dx1
=

{
dΦ(x1)

dx1
, f or dx1

dt �= 0,

λ , f or dx1
dt = 0,

(14)

where λ is Lipschitz constant.

For feedback linearization of the system, the following coordinate transformation is applied;

z =
[

z1 z2 z3
]T

=

⎡⎣ h(x)
L f h(x)
L2

f h(x)

⎤⎦ , (15)
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where L f h(x) is Lie derivative of h(x) with respect to the vector field f (x) which is defined by

Lf h(x) =
3

∑
i=1

∂h(x)
∂xi

fi (x) and L2
f h(x) = L f

(
L f h(x)

)
. (16)

After some calculation

z =

⎡⎢⎣ x2
x3

K
m

(
Φ(x1)

x2

)2
−g

⎤⎥⎦ (17)

is obtained and the System (10) can be rewritten in terms of new coordinates as

ż =

⎡⎣ L f h(x)
L2

f h(x)
L3

f h(x)+LgL2
f h(x)u

⎤⎦ =

⎡⎣ z2
z3

a(x)+b(x)u

⎤⎦ , (18)

where

a(x) = −
2KR
mL

Φ(x1)
dΦ(x1)

dx1

x1

x2
2
−

2K
m

Φ(x1)
2 x3

x3
2

(19)

and

b(x) =
2KN
mL

Φ(x1)
dΦ(x1)

dx1
. (20)

The nonlinear controller is chosen to eliminate the nonlinear terms of the System (18) as the following

u =
v−a(x)

b(x)
, (21)

where v is a controller for the linearized system. Substituting (21) into (18), the linearized system is obtained
which is in the form of Brunovsky controller as

ż =

⎡⎣ 0 1 0
0 0 1
0 0 0

⎤⎦z+

⎡⎣ 0
0
1

⎤⎦v, (22)

y =
[

1 0 0
]

z. (23)

(22) is unstable because of multiple roots at the origin. To achieve stability of the System (22), the linear controller
is designed for pole placement. For reference function r (t) , the linear controller is chosen as in the following

v = −k1 (r (t)− z1)+ k2z2 + k3z3, (24)

where k1,k2,k3 are coefficients of characteristic equation of the system. Substituting (24) into (22) the following
is obtained:

ż =

⎡⎣ 0 1 0
0 0 1
k1 k2 k3

⎤⎦z+

⎡⎣ 0
0

−k1

⎤⎦r, (25)

y =
[

1 0 0
]

z. (26)

k1,k2,k3 are parameters to be chosen such that characteristic polynomial

q(s) = s3 − k3s2 − k2s− k1 (27)

is a Hurwitz polynomial. Hence, the System (25) is stable.

4 Simulation Results
In this section, simulation results of the magnetic levitation system are presented for a sinusoidal reference input
r(t) = 4.5sin(2.3t). For Duhem model of hysteresis, α = 1; ζ (H) = 3.1635H and η(H) = 0.345 are chosen.
Simulation results are presented for k1 = −109,k2 = −3.106,k3 = −3.102 so that the roots of the System (25) are
p1 = p2 = p3 = −1000. The other system parameters are given in the following table.
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Parameter Presentation Value Unit
mass m 0.011 kg
coil resistance R 52 Ω
coil inductance L 1.227 H
coil turns N 1200 turns
maximum voltage umax 24 V
minimum voltage umin −24 V
sectional area A 4.91×10−4 m2

magnetic permeability of air μ0 4π ×10−7 H/m
gravity acceleration g 9.81 m/s2

initial ball position y0 0.005 m
initial current i0 0.01 A

Figure 3 shows that the output of the system is converged to reference input function which means the control
purpose is achieved. Figure 4 depicts the controller output. The magnetic field H and the magnetic induction B
are given in Figure 5 and Figure 6, respectively. Finally, Figure 7 describes the magnetic field H against to the
magnetic induction B which displays hysteresis behavior of the controlled System (25).
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Figure 3: Comparison of the system output with respect to reference input

5 Conclusions
In this work, hysteresis character of magnetic levitation system has been considered in mathematical modeling
which is usually ignored in literature. Duhem model has been applied for modeling hysteresis of electromagnet.
A useful derivative definition of Duhem model has been given for a smooth system which is necessary to apply
feedback linearization method. Thus, the nonlinear and the linear controller have been designed for the system.
Consequently, the hysteretic system tracked to the desired reference input function.
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Figure 4: Output of the controller
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Figure 5: Produced magnetic field
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Figure 6: Produced magnetic induction
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Figure 7: Hysteresis characteristic of controlled system
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