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Abstract. Present paper describes modelling of hierarchical manpower systems by two different

methodologies: a) system dynamics and b) discrete state space. Two various approaches contribute

to the understanding of manpower system structure which is similar to the supply chain structure in

manufacturing processes. Developed discrete state space model is applied for the determination of

proper control strategies which should drive the system from initial states to goal states by prescribed

trajectories and parameter limitations. Application of finite automaton enabled selection of acceptable

strategies.

While the manpower planning problems have been extensively studied [8; 5; 16; 2; 13; 9; 12; 1; 10; 14] both

in modelling and optimization there are practically no examples where the problem would consider time–variant

boundaries with time–variant goal. This is somehow to be expected since the mathematical optimum in such cases

is hard to provide. However, for the practical application the problem with time–variant boundaries and time–

variant goal should be addressed. In previous research [8] it has been indicated, that the bare numerical approaches

give little insight into the structure of gained solution. One major factor that impacts low acceptance of optimization

methods in manpower planning is low undestanding of the system structure. In present paper, the approach with

System Dynamics (SD) will be presented [4; 15], where the users get solid understanding of addressed system’s

structure. The relation of the SD model to the discrete time space will be presented where SD model contributes

to the understanding of the system structure. Since one does not deal with technical optimization process, the

understanding of each particular parameter as well as the model structure by user is of prime importance. One

of the important contributions of the present paper is inclusion of the rules which determine acceptable strategies

based on the time response of strategy. These rules could be qualitatively expressed by the users and should be

considered at the provision of acceptable strategy. In our case the methods of Finite Automata (FA) were applied

at the definition of criteria function.

1 Hierarchical Manpower Model Description
System dynamics [4] model shown in Fig. 1 represents transitions of manpower between individual ranks. The

structure shows that a system with only one input, internal recruitment u is examined in a way where individual rank

members are trained within the system rather. This would certainly hold for several top–most ranks of particular

organization considered.
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Figure 1: Structure of system dynamics model of rank transitions in the canonical form. Shown structure represents

delay chain of first order delay elements.

The general form of the System Dynamics model definition in continuous time is:

x(t) =

∫ t

t0
[Rin(t)−Rout(t)]dt + x(t0) (1)

d(x)
dt

= x net change = Rin(t)−Rout(t) (2)
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Stock variables x1,x2, . . . ,xn (levels) describe the state of the system, in our case the number of members in rank

x1,x2, . . . ,xn, while flow variables R and F (both are rates) represent the rates of change in stocks, such as transition

rates R and fluctuation F .

Formulation of the System shown in Fig. 1 in discrete space where Δt = 1, takes a form of:

{
x(k + 1) = Ax(k)+ Bu(k)

y(k) = Cx(k)
(3)

Where matrix A from Eq. 3 is:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1− r1(k)− f1(k) 0 0 . . .

r1(k) 1− r2(k)− f2(k) 0 . . .
0 r2(k) 1− r3(k)− f3(k) . . .

0 0 r3(k)
. . .

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎦ (4)

The input u(k) to the considered system is provided to x1 such that

x1(k + 1) = [1− r1(k)− f1(k)] x1(k)+ u(k) (5)

Therefore u(k) represents the new recruitment to the rank x1 and in fact this is the only input to the considered

system. The system dynamics model depends on input parameters (recruitment, promotions, and fluctuations).

2 Definition of strategy according to target functions
Trajectory function, which describes the way in which particular goal value should be attained is defined by the

following rule:

g(t) = xT +
(x0 − xk)(k− t)

k
e−pt (6)

where x0, xT represent initial and terminal state, k is simulation time and p ∈ [0,∞] importance factor. The set

of curves which attain goal value in prescribed final time is dependant on the value of importance factor, which

determine how fast the target value is achieved.

We want to minimize the distance to the target function defined by Eq. (6):

J = A

(
min
u,r, f

[ tk
∑
k=1

w
(

z(k)−x(k)
)2])

(7)

subject to:

umin(k) ≤ u(k) ≤ umax(k)
rmin(k) ≤ r(k) ≤ rmax(k)
fmin(k) ≤ f(k) ≤ fmax(k)

(8)

where A represents applied automaton which is used to classify acceptable strategies by elimination oscillations

in rates. The set of states is

S = {S0,S1,S2,S3,S4,S5}, the comparison alphabet is A = {l,e,g}, the initial state is i = {S0} and the set of

terminal states is T = {S0,S1,S2,S3,S4,S5}. The transition function of A2, δ : S×A→ S is defined by the following

transition table:

l e g
↔ S0 S2 S0 S1

← S1 S3 S1 S1

← S2 S2 S2 S4

← S3 S3 S3 S5

← S4 S5 S4 S4

← S5 S5 S5 S5

(9)

Where w is time–invariant vector of weights reflecting the importance of holding deviations for rank n as small as

possible, z(k) represents goal trajectory of the system defined by Eq. 6, umin(k) and umax(k) vectors of lower and
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upper boundary for recruitment in rank x1 respectively, rmin(k) and rmax(k) vectors of lower and upper boundary for

transitions between ranks x respectively, fmin(k) and fmax(k) vectors of lower and upper boundary for fluctuations

in rank x respectively. Note that all boundaries are time dependant which increases the complexity of addressed

optimization problem.

Application of Pattern search numerical optimization with GPS Positive Basis 2N Pool method (MATLAB imple-

mentation) the proposed system enables efficient determination of proper strategies according to provided target

trajectory functions [8].

Dynamic Programming Approach with Three States Example Let us consider the following dynamic pro-

gramming [11] optimal strategy formulation:

φ(k + 1) = min
u,r, f

H
[
x(k),A(k),B(k),u(k)

]
(10)

x(k + 1) = G
(

φ(k)
)

(11)

φ(0) = 0 (12)

with

u(k) ∈ U(k)
r(k) ∈ R(k) (13)

f (k) ∈ F(k)

where φ(k) is optimal set of parameters u,r, f at time k and H performance function, in our case, quadratic

performance index. Initial condition for φ annotates, that at time t = 0 no optimal solution for φ exists meaning

that at the stated initial conditions for x there is no strategy that would improve H; possible disproportion at time

t = 0 could not be changed in any way. G is function declared by the state space definition of the system in Eq. 3.

At each time-step one has to solve one optimization problem according to defined function.

In order to clearly present the approach by dynamic programming and possible consequence of application of

quadratic performance index with boundaries let us consider the following Three States Example:

Consider three ranks, x1,x2,x3 with initial conditions x1(0) = 100, x2(0) = 50, x3(0) = 80, target values z1(k) = 70,

z2(k) = 40 and z3(k) = 100 with boundaries

0.00000 ≤ u(k) ≤ 50.00000

0.06000 ≤ r(k) ≤ 0.20000

0.00010 ≤ f(k) ≤ 0.04000
(14)

At each time-step the following optimization problem is solved for φ(k + 1):

minu,r, f

(
[z1(k)− x1(k)+ f1(k)x1(k)−u(k) + x1(k)r1(k)]2 +

[z2(k)− x2(k)+ f2(k)x2(k)− x1(k)r1(k) + x2(k)r2(k)]2 +

[z3(k)− x3(k)+ f3(k)x3(k)− x2(k)r2(k) + x3(k)r3(k)]2
)

Results obtained by the dynamic programming approach exercise oscillatory beharior which does not satisfy ac-

ceptable strategy criteria where oscillations in rates should be avoided. Important conclusion with regard to gained

results is, that optimal strategy, which would consider only target values for ranks within prescribed boundaries

of the parameters could provide undesired oscillatory solution. It has to be noted, that if the only goal would be,

that the desired number of man in particular rank should be achieved as fast as possible this would be an optimal

solution. One could argue, that the criteria function stated by Eq. (12) should incorporate the terms with regard to

u and other rate elements. However, even incorporating mentioned terms in criteria function would not necessar-

ily provide non–oscillatory solutions since the weight put on particular term determines what is more important,

whether: a) distance from the target value or b) oscillation in the strategy rate elements. Put in other words, what

is more important, to achieve target values as fast as possible or the path to get there? There are many approaches

to define optimal solutions in hierarchical system, [8; 13] however, optimal solution could hardly be provided

especially if all the of the parameters in state space as well as parameter boundaries are time-variant as in our case

and basically in any other similar real–world case.

3 Conclusion
Successful application of sophisticated optimization approaches to the manpower planning depends on the user

understanding of the process considered. In this regard SD has been identified as proper approach to modelling
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hierarchical manpower system. Systemic view to the developed system provided an understanding of the problem

addressed to the Decision Group. Since the problem addressed is much larger as regularly expected user inter-

face should be carefully designed in order to provide easy definition of addressed complex optimization problem.

General observation at the literature review showed, that there is no single method, that would provide optimal

solution of the described problem. One reason is in weights that could be arbitrarily put to particular part of the

optimization problem. Initially it would seem reasonable to define the control problem only as minimization of

the distance to the target function with consideration of parameter boundaries. Here the rationale is, that target

trajectory should be reached with no important costs when rate elements are within prescribed boundaries. This

kind of problem formulation would actually yield the optimal solution if one would like to achieve target values

in shortest possible time. Important finding is however, that statement of the problem, where only minimization

of the distance to the target function by considering boundaries is not sufficient, resulting in possible undesired

oscillatory solutions. In order to complete the definition of the control problem, the acceptable strategies were de-

scribed and FA were developed accordingly. The differences between two differently stated control problems were

shown on examples. Application of FA provided proper results where gained strategies did not show undesired

oscillation patterns. Certainly, there is a cost that is paid for providing the proper shape of the strategy which was

shown by different values of quadratic performance index meaning, that more time is needed to achieve desired

goal. Developed approach could be transferred to other similar hierarchical systems such as supply chains [6] or

chain production systems [7]. As the further research, the algorithms above optimization algorithm such as GA

and PS should be considered, which would automate the tuning of the algorithm as well as other computational

approaches [3].
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[15] J. D. Sterman, Business Dynamics: Systems Thinking and Modeling for a Complex World, Irwin/McGraw–

Hill, Boston, MA, 2000.

[16] S. Vajda, Mathematics of Manpower Planning, John Wiley & Sons, Chichester, 1978.

2595

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume


