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Abstract. Casting simulation for microscale components requires multiscale modeling of the heat
exchange between the melt and the macroscopic mould, the results allowing for detection of early
solidification and the calculation of cooling curves.
The melt model, discretized with smoothed particle hydrodynamics (SPH), is coupled to a small ordi-
nary differential equation (ODE) system representing the mould. It is obtained from the model order
reduction (MOR) of a finite element method (FEM) discretized system. In this way, the advantages of
the Lagrangian discretization of the fluid can be combined with the potential of a spatially refined FEM
grid while keeping the requirements on computational ressources low.

1 Introduction
Microcasting is a metal forming process based on lost-wax lost-mold investment casting. It is used to create small
structures in the micrometer range by using a metal melt which is cast into a microstructured mold, allowing
for very complicated parts even with undercuts. Fields of application are, e.g., instruments for minimal invasive
surgery, dental devices and instruments for biotechnology [1].

The process parameters have a large influence on the casting results. Especially in the micro range, solidification
may occur before the mold is filled completely, and long structures with small diameters could clog. The reason is
that the melt may be cooled below its liquidus temperature too early due to the contact with the colder mold. It is
thus imperative to preheat the mold, yet temperatures should remain as low as possible to save processing time and
energy. Further, the cooling curve determines the size and shape of grains in the microstructure of an alloy, where
grains may reach the size of the micro structure’s features. Simulation is used to estimate the cooling curves and
to optimize process parameters [2].

One challenge for numerical simulation is the multiscale problem of micrometer sized device features in a centimeter-
sized mold. By simulating the thermal behavior of the mold with FEM, a fixed (Eulerian) grid approach with fixed
neighborhood relationships, we can use a locally refined mesh close to the micro structures. Since the FEM sys-
tem of equations is rather large, model order reduction [3] is applied for reducing computation time. The particle
method SPH, a Lagrangian discretization of the Navier Stokes equations where neighborhood relationships are
calculated on-the-fly, is used for the fluid. It allows for a convenient simulation of free surfaces and internal de-
grees of freedom (DOFs) like enthalpy, since the discretization moves along with the flow. Exchange of thermal
energy and thus coupling of FEM and SPH is achieved by special terminal particles on the wall. Figure 1 shows a
schematic outline.

Figure 1: Schematic outline of the simulation process

The simulation geometry consists mainly of the sprue, the microstructures are attached at the bottom. The melt
is poured in to the system from the top (Fig. 2). It is initially formed as a cube of SPH particles with side length
8 mm and positioned just above the two sprue channels. Being at rest at the beginning of the simulation, gravity
accelerates it (acceleration by centrifugal force can easily be implemented, too).

The rest of the paper is organized as follows: Section 2 discusses the finite element method with a special focus on
input and output terminals on the FEM domain’s boundaries. Section 3 presents model order reduction by moment
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Figure 2: Computational mesh of the mold used for FEM. Diameter: 47 mm, height: 55 mm

matching. Section 4 shows how the SPH discretisation is applied to the casting model. Section 5 shows how those
methods can be combined in an integrated model. Finally, section 6 presents results obtained with the model.

2 The Finite Element Method and its interfaces
Let the simulation domain Ω ⊂ R3 be an open set with piecewise smooth boundary Γ = Γq ∪Γh, furthermore let
Γq ∩Γh = /0, where the bar means the set closure. Let n be the unit outward normal vector to Γ, c the specific heat,
ρ the mass density and κ the thermal conductivity of the melt; those values shall be positive and, in contrast to the
fluid, constant for the mold. We seek the solution of the heat transfer equation for the temperature T at time t > t0,

∇ · (κ∇T )− cρ
∂T
∂ t

= 0 in Ω

with boundary and initial conditions T = q on Γq, −κ∇T ·n = h on Γh, and T (t = t0) = T0 in Ω. After building
the weighted residual with weighting functions θi ∈ H1(Ω) the equation is transformed to the weak form by partial
integration. The temperature is now approximated by shape functions ϕi, so that T = ∑ j Tj(t)ϕ j(r). In the Galerkin
FEM, ϕi = θi.

∑
j

Ṫj

∫
Ω

cρϕ jθi dv+∑
j

Tj

∫
Ω

κ∇ϕ j∇θi dv =
∫

Γ
κ∇T ·nθi dΓ (1)

For the coupling process, we need to access temperature data T̂k at several locations rk using the shape functions,
T̂k = ∑ j Tj(t)ϕ j(rk); the resulting multiplication factors for the Tj can be computed in advance, resulting in T̂ =CT,
where C is the output matrix.

The model order reduction approach we use depends on the definition of a limited number of system inputs, where
each additional input has an impact on the total size of the reduced system.

The inner wall of the mould, which is in contact to the melt, is partitioned into surface patches Γl (see Fig. 4). The
heat flux from the melt into the mould is averaged on such a patch. Assume that the averaged flux is −κ∇T ·n= Jl ,
then the contribution to the right-hand side of (1) is

fi =
∫

Γ
−J(r)θi dΓ = ∑

l

∫
Γl
−Jlθi dΓ = ∑

l
BilJl .

We call B the input matrix of the system. In this way, we define input and output terminals and matrices for the
system, so that the linear system composed from (1) reads

EṪ = AT+BJ

T̂ = CT. (2)

3 Model Order Reduction
Model order reduction is used to generate a compact model of the thermal behavior of the mold automatically [3, 4],
since the complexity of FEM models like (2) results in long CPU simulation times.

The system of equations is converted to frequency space by a Laplace transform, T̃ = L (T ), J̃ = L (J) :

sET̃(s)−AT̃(s) = BJ̃(s)
˜̂T(s) = CT̃(s).
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The transfer function of the system and its Taylor expansion are:

H(s) = ˜̂T/J̃

= C(sE−A)−1B

= C
(
sA−1E− I

)−1
A−1B

=
∞

∑
i

si
[
−C

(
A−1E

)i
A−1B︸ ︷︷ ︸

mi

]
.

The goal of moment matching methods is a reduced system ErṪr(t) = ArTr(t)+BrJ(t); T̂(t) = CrTr(t), where
the first q moments of the Taylor expansion of the transfer functions of the full and the reduced system are equal.
For that purpose, the moments m1, . . . ,mq with mi =

(
A−1E

)i
A−1B are used as basis vectors for a subspace V

such that T ≈VTr. Using this projection in (2) and left-multiplying the first line with VT results in

Er = VTEV Ar = VTAV

Br = VTB Cr = CV. (3)

and the corresponding system

ErṪr = ArTr +BrJ

T̂ = CrTr.

The basis vectors of the subspace are calculated iteratively, vi+1 =
(
A−1E

)
vi (Krylov subspace). Since the explicit

calculation of moments leads to numerical instabilities, in the Arnoldi algorithm these moments are orthonormal-
ized by a modified Gram-Schmidt procedure [11]. Often, results are already satisfactory for small q (e.g., 5 per
input). However, it is necessary to limit the model to a low number of external inputs, since every input enlarges
the number of reduced variables.

The size of the reduced system can be selected independently from the size of the original system, so that even
highly-resolved full systems can be reduced to a few degrees of freedom.

4 Smoothed Particle Hydrodynamics
The SPH method has its basis in astronomy, where it was applied to the simulation of galaxies, but it is flexible
enough to bridge the gap to the microsystem range. In contrast to FEM and when used for fluidic simulation,
SPH is a Lagragian discretization (moving along with the flow); neighborhood relationships are calulated on-the-
fly. It is very useful for large deformations, free surfaces, where the fluid part is represented by the presence of
particles, and for contact problems. Each particle may carry additional degrees of freedom (DoFs), and those DoFs
are automatically transported along, so that no convection equations such as for the Eulerian methods need to be
solved. The starting point of SPH is the idea that an arbitrary function f (r) may be approximated by [5, 6]

〈 f (r)〉 ≈
∫

f
(
r′
)

Wh
(
r− r′

)
dr′

where Wh (r− r′) is an interpolation function of width h which is normalized by
∫
Rn W dv = 1. The integral is

replaced by a sum over a finite number of material points or “particles” at position r j. Additionally we replace
f (r) by the particle-centered value fi = f (ri), where i is the particle index. Using m j for the particle mass, ρ j for
the particle’s local density and Wi j = Wh (ri − r j), we find for 〈 fi〉 and its spatial derivative:

〈 fi〉 ≈ ∑
j 
=i

m j

ρ j
f jWi j

(∇ f )i ≈ ∑
j 
=i

m j

ρ j
f j∇Wi j.

The second derivative can be discretized using the form

(∇ ·κ(r)∇ f )i ≈ ∑
j 
=i

m j

ρ j

(κi +κ j)( fi − f j)(ri − r j)∣∣ri − r j
∣∣2 ∇Wi j

= ∑
j 
=i

m j

ρ j
(κi +κ j)( f j − fi)Fi j
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where Fi j is defined by ∇Wi j = −(ri − r j)Fi j. The local density can be determined by setting f = ρ . Applied to
the Lagrangian form of the momentum equation,

dv
dt

= (1/ρ)∇ ·σ = −
1
ρ

∇p+
1
ρ

∇ ·μ∇v,

where v is flow speed, ρ is the density, p is the preasure and μ is the viscosity, one can use the following SPH
discretization [7]:

dvi
dt

= −∑
j 
=i

m j
((

σ i/ρ2
i
)
+

(
σ j/ρ2

j
))

∇Wi j,

where v is the velocity field and σ is the stress tensor. We split this expression into two parts, one for the equation
of state, the other for the viscous parts:

dvpres
i

dt
= −∑

j 
=i
m j

(
pi

ρ2
i

+
p j

ρ2
j

)
·∇Wi j

dvvisc
i

dt
= −∑

j 
=i

m j

ρiρ j
(μi + μ j)(vi +v j)Fi j.

As equation of state, we use

p = p0

[(
ρ
ρ0

)γ
−1

]
, γ = 7,

with which we can specify the allowable density deviation from an incompressible fluid. The sums run both over
the fluid particles as well as particles on the wall (see section 5) to model no-slip boundary conditions, with the
difference that the particles on the wall remain at their fixed place an thus feel no acceleration. Gravity can be
added as constant acceleration term, also a centrifugal pseudo force term depending on the particle’s coordinates.
For the discretization of the energy equation including stress effects and heat conduction, one can use [7, 8]:

dEi
dt

= ∑
j

[
(vi −v j) ·

σ i

ρ2
i
·∇Wi j − (κi +κ j)(Ti −Tj)

Fi j

ρiρ j

]
. (4)

Since during solidification of a metal, heat is released due to the crystallization of the liquid’s atoms, a nonlinear
T (E) relationship emerges (see, for example, Fig. 3). Thus, the appropriate degree of freedom is enthalpy E instead
of temperature T , and functions T (E) are used in (4). Stress effects are expected to be negligible, as is frictional
heat, the consequence being that the first term of (4) is neglected.
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Figure 3: Simulation of the solidification of an CuAl alloy (9 wt-% Al), performed with the microstructure simulator
MICRESS[9]: Thermal energy is removed at a constant rate of 50Jcm−3 s−1. Only when the melt is completely solidified
and all latent heat is removed does the temperature decrease.

5 Coupling of SPH, FEM and MOR
Coupling is performed through a set of fixed (“wall”) particles placed outside of the cavity’s boundary, inside the
FE mesh. They serve as the slaves in a master/slave coupling setup [10]. To each of those, a small patch l on the
boundary is assigned, the patches being chosen based on the expected fluid flow and required spatial resolution
(Fig. 4). Each patch gets assigned an input Jl to (2). Heat between fluid particles is exchanged by (4). Heat between
fluid and wall particles is also exchanged by this equation, with the modification that the wall particles have an
additional temperature DOF, which is determined by solving the reduced system (2); the temperature of the fluid
particles is determined only by their enthalpy.

The simulation loop is thus as follows, with i, j being indices for fluid particles and k for wall particles:
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Figure 4: Coupling of wall particles to the FEM system of equations. Different colors signify different input groups.

1. Exchange energy between fluid particles, where the temperature is calculated based on their enthalpy. This
allows for phase transitions: Ti, j = T (Ei, j).

2. Exchange energy between wall and fluid particles, where the temperature of the fluid particles is calculated
as above and the temperature Tk of the wall particles is calculated from the previous solution of the reduced
FEM system.

3. Add up the enthalpies of all wall particles belonging to an input Jl and form the RHS of (2).
4. Update Tk by solving the reduced FEM system.
5. Clear enthalpy DOF of wall particles.

Since the wall particles collect enthalpy, but (2) is written in terms of heat flow, the RHS has to be divided by the
timestep. Further, the inputs in (2) are heat fluxes (flow per area); the enthalpies in the wall particles, on the other
hand, are already integrated over the necessary area; thus, the columns i of B in (2) are divided by ∑k Bik.

Time integration of the SPH equations is performed with an explicit velocity verlet algorithm. The reduced FEM
system is small enough that the matrices involved can be inverted during the initialization of the software, so that
the implicit backward Euler algorithm can be used at each timestep with no performance penalty.

6 Results

Figure 5: Filling simulation. The fluid’s coloring indicates enthalpy, the coloring of the mold indicates temperature.

Figures 5 and 6 show the filling of the mould and the resulting temperature/enthalpy distribution. The heat ca-
pacities for mold and fluid have been chosen equal as 1 and as temperature/enthalpy relationship has been set to
T (E) = E. The cooling of the melt and heating of the mold is clearly visible. The temperature curve shows an
interesting feature: The particle is first cooled down as it splashes on the walls, but then warmes up again as it
touches other hotter parts of the melt.

The solution of the FEM system, resulting in O(106) FLOPs per timestep, is reduced to O(104) FLOPs per timestep,
which is substantially less than the O(106) FLOPs required for the SPH timestep integration.

7 Conclusion
The combination of SPH, FEM and MOR has shown its potential for computationally efficient co-simulation of
solid and liquid structure; the CPU time spent to solve the FEM system and even the reprojection overhead is
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Figure 6: Temperature curve for particle no.1. On the left, the trajectory is shown. It is color coded with the temperature
curve shown in the right graph (difference to initial enthalpy shown).

negligible. Comparisons between the simulator running with the FEM solution turned on and off showed no
relevant difference in required computing time. The limiting factor is the number and positioning of boundary
patches and inputs; more research on many-IO MOR is necessary.
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