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Abstract. In this paper, we propose to study a model with two competitors competing for a single
nutrient in a chemostat with a slowly varying washout rate. We show that the model exhibits the delayed
loss of stability phenomenon when the washout rate crosses the bifurcation value at which the growth
curves of the two competitors intersect.

1 Introduction
Consider the chemostat model with two competitors on a single resource, of concentration s(·) :

ds
dτ

= D(sin − s)− μ1(s)x1 − μ2(s)x2

dxi
dτ

= (μi(s)−D)xi, (i = 1,2)

(1)

The concentrations of the two different micro-organisms in the system are denoted x1(·) and x2(·). The concentra-
tion of the input nutrient, denoted by sin, is kept constant. The growth functions μi(·) are assumed to be strictly
monotonic and such that μi(0) = 0. The term D is called the washout rate. Considering values of D less than
mini μi(sin), we denote by λi the break-even concentrations μ−1

i (D). When D is kept constant, it is well known
from the Competitive Exclusion Principle (CEP) that generically at most one competitor survives asymptotically.
More precisely, when λ1 < λ2 (resp. λ1 > λ2), the CEP claims that (s(τ),x1(τ),x2(τ)) converges asymptotically
to (λ1,sin −λ1,0) (resp. (λ2,0,sin −λ2)) when τ tends to infinity (see for instance [9]).

In this paper, we consider growth curves μ1 and μ2 that intersect in exactly one point s∗ > 0:

μ1(s∗) = μ2(s∗) = D∗ < sin

with μ2(s) < μ1(s) for 0 < s < s∗ and μ2(s) > μ1(s), see Figure 3, left. Furthermore, we consider a slow time
varying washout rate D = D(ετ), that is ε > 0 is small, that alternatively favors competitor 1 and competitor 2,
assuming that there exist numbers

an < bn < an+1 < bn+1, n ∈ I,

where I is a set of indices such that for all n ∈ I we have

D(an) = D(bn) = D∗, D(t) < D∗ for an < t < bn, D(t) > D∗ for bn < t < an+1.

Let λ1(t) = μ−1
1 (D(t)), and λ2(t) = μ−1

2 (D(t)). We have λ1(t∗) = λ2(t∗) = s∗ and

λ1(t) < λ2(t) for an < t < bn, λ2(t) < λ1(t) for bn < t < an+1.

In real-life bioprocesses, such as waste-water treatments, inputs are often time-varying. Usually the time scale of
theses variations is faster or about the same than the biological one. This is a motivation for studying the chemostat
with time-varying inputs (sin or D) favoring alternatively one of the competitors, as it has already been made in the
literature [10, 6, 8, 5, 3, 4]. Then, an asymptotic coexistence has been proved to occur, under particular conditions
on the variations of the inputs. Designing periodic inputs is a way to maintain more than one competitor above
some thresholds at any time.

On the opposite, in natural ecosystems, such as in mountain lakes for instance, one may expect that the variations
of the environment are much slower than the biological time scale. To our knowledge, the model of the chemostat
distinguishing two different time scales has not been yet studied. This is the purpose of the present work. We focus
here on the transient behavior of the dynamics, and show that when D crosses the bifurcation value D∗ i.e. gets
more favorable to the other species, one may have to wait a large time before observing the density of this later
species becoming dominant. This phenomenon is known in slow-fast dynamics as a stability loss delay. Here, we
provide also an approximation of this delay.
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From the application point of view, this result might be an interpretation of the sudden apparition of a species
in ecosystems that are known to be favorable to this species, but when one may think that the species is absent
because it hasn’t been observed in significant concentrations from a relatively long time.

The paper is organized as follows. In Section 2 we study the delayed loss of stability phenomenon and we compute
the entrance-exit functions which give the approximation of the delay. In Section 3 we give sufficient conditions
for the coexistence of the species in the nonperiodic case. In Section 4 we illustrate our results by numerical
simulations.

2 Stability Loss Delay in the chemostat
In terms of the slow time t = ετ , system (1) becomes

ε ṡ = D(t)(Sin − s)− μ1(s)x1 − μ2(s)x2
ε ẋi = (μi(s)−D(t))xi, (i = 1,2)

(2)

where the dot designates the derivatives with respect to time t. This system is a slow-fast system whose slow curve
is given by

S1 = (λ1(t),sin −λ1(t),0), S2 = (λ2(t),0,sin −λ2(t)).

Notice that S1 is attracting when an < t < bn and S2 is attracting when bn < t < an+1. Let (s0,x10,x20,t0) be an ini-
tial condition such that an < t0 < bn. From Tikhonov theory (see [7]) we deduce that the solution (s(t),x1(t),x2(t))
of (2) jumps very quickly near the quasi-steady (λ1(t0),sin −λ1(t0),0) and then remains close the slow curve S1
as long as t ∈]t0,bn[, that is

s(t) ≈ λ1(t), x1(t) ≈ sin −λ1(t), x2(t) ≈ 0, when t ∈]t0,bn[.

It seems plausible to expect that when t ∈]bn,an+1[ then the solution will be close to the attracting slow curve S2
so that we will have the folowing approximations

s(t) ≈ λ2(t), x1(t) ≈ 0, x2(t) ≈ sin −λ2(t), when t ∈]bn,an+1[.

In fact, due to the delayed loss of stability phenomenon (see [1]), this behavior is not the right one and the solution
will stay near the slow curve S1, until t reaches a value t1 > bn. Since the slow curve S1 is not attracting when
bn < t < an+1, and the solution remains near this non attracting slow curve for bn < t < t1 we say that there there is
a stability loss delay. The mapping Hn : t0 
→ Hn(t0) = t1 is called the entrance-exit function along the slow curve
S1. We have (see [2] for similar results)

Theorem 1 Assume that∫ an+1

an
[μ2(λ1(t))−D(t)]dt > 0. (3)

The entrance exit function Hn : [an,bn] → [bn,an+1] is given by the smallest time Hn(t) > t such that∫ H1(t)

t
[μ2(λ1(u))−D(u)]du = 0. (4)

Proof. Without loss of generality we assume that 0 < x20 < 1. The change of variable X2 = ε lnx2 maps the strip
0 < x2 < 1 into the half space X2 < 0. This change of variable transforms (2) into

ε ṡ = D(t)(Sin − s)− μ1(s)x1 − μ2(s)exp(X2/ε)
ε ẋ1 = [μ1(s)−D(t)]x1
Ẋ2 = μ2(s)−D(t)

(5)

The initial condition becomes X2(t0) = ε lnx20. System (5) is a slow and fast system, with X2 and t as the slow
variables and s and x1 as the fast variables. We have limε→0 exp(X2/ε) = 0. Thus, the fast equation is written as

s′ = D(t)(Sin − s)− μ1(s)x1
x′1 = [μ1(s)−D(t)]x1

(6)

where t is considered as a parameter. The equilibrium

s = λ1(t), x1 = Sin −λ1(t) (7)

of (6) is attracting for all t ∈ [an,bn]. Thus, on the slow surface Σ of (5) defined by equations (7), the slow equation
is

Ẋ2 = μ2(λ1(t))−D(t) (8)
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According to Tikhonov’s theory, the trajectory goes very quickly towards the slow surface Σ. Then a slow transition
develops near Σ. This slow transition is approximated by the solution of (8) with initial condition X2(0) = 0. This
solution is given by

X2(t) =
∫ t

t0
[μ2(λ1(u))−D(u)]du. (9)

Thus, according to (4), we have again X2 = 0 for t1 = Hn(t0). Returning to the original variables, we see that the
trajectory γ(t,ε) crosses again the set x2 = x20 when t is asymptotically equal to t1 = Hn(t0). Since (3) holds, we
have t1 ∈]bn,an+1[. Since for all t ∈]bn,an+1[, the slow curve S2 is attracting, Tikhonov’s theory predicts that the
trajectory γ(t,ε) will jump quickly near the slow curve S2 and then move near this slow curve, with increasing t.
	

At time t1 the solution jumps from the neighborhood of the the quasi-steady (λ1(t1),sin −λ1(t1),0) to the neigh-
borhood of the quasi-steady (λ2(t1),0,sin −λ2(t1)) and then remains close the attracting slow curve S2, as long as
t ∈]t1,t2[, where t2 = Gn(t1) and. Gn is the entrance-exit function along the slow curve S2. Similarly we have

Theorem 2 Assume that∫ bn+1

bn
[μ1(λ2(t))−D(t)]dt > 0. (10)

The entrance exit function Gn : [bn,an+1] → [an+1,bn+1] is given by the smallest time Gn(t) > t such that∫ Gn(t)

t
[μ1(λ2(u))−D(u)]du = 0. (11)

3 Coexistence
For a T -periodic D(·) the conditions (3) and (10) reduce simply to the following conditions∫ T

0
[μ2(λ1(t))−D(t)]dt > 0

∫ T

0
[μ2(λ1(t))−D(t)]dt > 0.

These condition are sufficent for the existence of periodic solutions [9]. In this section we show that in the general
nonperiodic case conditions (3) and (10) are sufficent for the the coexistence of the species.

μ1

μ2

D(Hn(t))

D(t)

λ1(t)

μ2(λ1(t))

λ1(Hn(t))

μ2(λ1(Hn(t)))

ss∗

D∗

Figure 1: The functions μi and the relative positions of D(t) and D(Hn(t)) when t ∈ [an,bn].

From (3) we deduce that cn = Hn(an) < an+1. From (4) and the implicit function theorem we have

H ′
n(t) =

μ2(λ1(t))−D(t)
μ2(λ1(Hn(t)))−D(Hn(t))

.

Since t ∈ [an,bn] and Hn(t) ∈ [bn,an+1], we have, see Fig. 1:

μ2(λ1(t)) < D(t), μ2(λ1(Hn(t))) > D(Hn(t))

Thus H ′
n(t) < 0 and Hn is decreasing from [an,bn] into [bn,cn]. Similarly Gn is decreasing from [bn,an+1] into

[an+1,b0
n], where, from (10), b0

n = Gn(bn) < bn+1. Let a0
n = Gn(cn) > an+1. The mapping

Tn = Gn ◦Hn : [an,bn] −→ [a0
n,b0

n]
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is increasing, we have Tn(an) = a0
n, Tn(bn) = b0

n and, see Fig. 2:

an+1 < a0
n < b0

n < bn+1.

an bn cn an+1 a0
n b0

n
bn+1

t

z

z=
∫ t

bn
[μ1(λ2(u))−D(u)]du

z=
∫ t

an
[μ2(λ1(u))−D(u)]du

�
�

z=
∫ t

cn
[μ1(λ2(u))−D(u)]du

Figure 2: The mapping Tn = Gn ◦Hn from [an,bn] into [a0
n,b0

n].

From Theorems 1 and 2 we obtain the following approximations

Proposition 3 Asume that sin > maxt(λ1(t),λ2(t)) and conditions (3) and (10) are satisfied. Let (s0,x10,x20,t0)
be an initial condition such that an < t0 < bn. Let t1 = Hn(t0) and t2 = Gn(t1) = Tn(t0). Then the solution
(s(t),x1(t),x2(t)) of (2) satisfies the following approximation

(s(t),x1(t),x2(t)) ≈

{
(λ1(t),sin −λ1(t),0) when t ∈]t0,t1[

(λ2(t),0,sin −λ2(t)) when t ∈]t1,t2[
(12)

We assume that the sequences an and bn are indexed by N and satisfy

A ≤ bn −an ≤ B and A ≤ an+1 −bn ≤ B,

with B ≥ A > 0. We assume that conditions (3) and (10) hold for any n ∈ N. Let m > 0 such that m < sin −
maxt(λ1(t),λ2(t)). Let t0 ∈ [a0,b0]. Let (s(t),x1(t),x2(t)) the solution of (2) with initial condition satisfying
x1(t0) > m and x2(t0) > m. From Proposition 3 we deduce that for any n ≥ 1 there exists θn ∈ [an,bn] such that
x1(θn) > m. Similarly for any n≥ 1 there exist σn ∈ [an,bn] such that x2(σn) > m. Hence both species are observed
in significant concentrations for arbitrarily large times.

4 Simulation
We have considered the following growth functions

μ1(s) =
4s

1 + s
, μ2(s) =

s
0.5 + s

+ s2

that take the value D∗ � 2.2 at the intersection of their graph away from zero (see Figure 3, left).

The washout rate D(·) has been chosen periodic (for simplicity)

D(ετ) = D∗(1 + 0.2cos(ετ)), ε = 0.05

The values an, bn are given by

an =
π
2

+ 2nπ , bn =
3π
2

+ 2nπ , n ∈ Z.

Bifurcations occur in time τ at α0 = a0/ε = 10π � 31.4 and β0 = b/ε = 30π � 94.2, while the change of domi-
nance of species is observed at times τ∗ � 64 > α0 and τ∗∗ � 116 > β0 on the simulation (see Figure 3, right and
Figure 4). We have computed numerically the time τ1 = t1/ε � 65 where t1 = H2(0) is given by (11) and the time
τ2 = t2/ε � 113 where t2 = H1(t1) is given by (4). In accordance with Theorems 1 and 2, one can check that times
τ1, τ2 are good approximations of times τ∗, τ∗∗.
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Figure 3: On the left, the growth functions μi(·). On the left, the whashout D(·) with respect to time τ .
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Figure 4: Competitors concentrations with respect to time τ .
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