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Abstract. The mechanical model of oxygen-containing precipitates in silicon wafers is proposed. 

The precipitate is modeled as an elastic isotropic inclusion in the shape of a spheroid buried in an 

anisotropic matrix. The stress-deformation state caused by the precipitate is obtained within the 

framework of the proposed precipitate model. A method for estimation of the precipitate eigen-

strain based on an analysis of the precipitate-dislocation loops complexes is developed. The ob-

tained eigenstrain estimate is used for calculation of the stress-deformation state in a silicon wafer 

with internal getter. 

1 Introduction 
The effective tool for eliminating of the negative influence of the defects within the silicon wafers is the forma-

tion of different sinks for point defects (including intrinsic and impurity defects) and dislocations. The internal 

sink for the defects is usually called getter and the process of the internal getter formation is called the gettering 

process. The silicon wafers with built-in internal getter are used in the modern VLSICs manufacturing technolo-

gy. The getter is formed as a result of the controlled decomposition of the oversaturated solid oxygen solution in 

the silicon and it consists of the oxygen-containing precipitates. Depending on the precipitates sizes and the 

features of external loading the precipitates can be either sinks for the defects or sources of the defect nucleation. 

The modeling of the stress-deformation state in the silicon wafer containing precipitates is an actual problem 

since the mechanical strains and stresses caused by a precipitate strongly influence on its behavior. 

2 The mechanical model of the oxygen-containing precipitate 
The TEM image of the isolated oxygen-containing precipitate formed in the Czochralski single-crystal silicon as 

a result of multistage thermal treatments is given on Figure 1. According to experimental data the precipitates lie 

on the crystallographic plane {100} and have the plate-like shape. The precipitates edges coincide with crystal-

lographic direction <110>. 

Figure 1. The TEM image of an isolated oxygen-containing precipitate. 

Let us model a precipitate as an elastic inclusion in the shape of a spheroid buried in an infinite matrix. The ma-

trix is supposed to be of cubic type anisotropy with the elastic constants corresponding to the single-crystal sili-

con. The inclusion is isotropic with the polycrystalline silicon dioxide elastic constants. The components of stiff-

ness tensors of the matrix and inclusion will be referred to as 
0

ijklC  and 
1

ijklC , respectively, and can be written in 

the following form 

( )
3

0

0 0 0

1

ijkl ij kl ik jl il jk ip jp kp lp
p

C λ δ δ μ δ δ δ δ μ δ δ δ δ
=

′= + + + �  (1) 

( )1

1 1ijkl ij kl ik jl il jkC λ δ δ μ δ δ δ δ= + +  (2) 

Here ijδ  is the Kronecker delta. Elastic properties of the isotropic inclusion are characterized by two Lame con-

stants 
1

λ  and 
1

μ  while for matrix due to the cubic type of anisotropy along with two Lame constants 
0

λ  and 
0

μ
there is additional independent elastic constant 

0
μ′ .  
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Owing to the phase transformation during the precipitate formation the inclusion gains inelastic eigenstrains 
0

ijε
in the form of pure dilatation 

0

ijε δ  [1]. The inclusion is supposed to be subjected to the uniform loading at in-

finity with the known strain tensor ijε ∞
. 

To solve the problem of searching for the stress-deformation state caused by the precipitate within the stated 

above model let us consider an “equivalent inclusion” with the same elastic modulus 
0

ijklC  as a matrix but under-

going “equivalent eigenstrain” ijε ∗
 differing from 

0

ijε . The necessary and sufficient condition for the equivalency 

of the strains and stresses induced by the precipitate and “equivalent inclusion” is the following [2]

( ) ( )1 0 0

ijkl klmn mn kl kl ijkl klmn mn kl klC S C Sε ε ε ε ε ε∗ ∞ ∗ ∗ ∞− + = − +  (3) 

where ijklS  are the components of the, so called, Eshelby tensor. Here and throughout the convention of summa-

tion for repeated indices is used. The components of the Eshelby tensor can be written in the following form 

[1,2] 

1 2

0 3 31 2 1 2

3

1 1 3 1 1 31 0

1
, , , ,

8
ijkl pqkl ipjq jpiqS C G G d d

a a a a a a

π ζ ζζ ζ ζ ζ θ ζ
π −

� �′ ′′ ′ ′ ′�  �  ′= +� �� � � �
� �� � � �� �

� �  (4) 

where ( )1/ 2
2

1 31 cosζ ζ θ′ ′= − , ( )1/2
2

2 31 sinζ ζ θ′ ′= − , 
1

a  and 
3

a  are the spheroid half-axis and 

( ) ( ) ( )1

1 2 3 1 2 3 1 2 3
, , , , , ,ijkl ij k lG N Dξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ−=  (5) 

( ) ( ) ( ) ( )
( )

2 6 2 2 2 2 2 2 2

1 2 3 0 0 0 0 0 0 0 0 0 1 2 1 3 2 3

2 2 2 2

0 0 0 1 2 3

, , 2 2 2

3 3

D ξ ξ ξ μ λ μ μ ξ μ μ λ μ μ ξ ξ ξ ξ ξ ξ ξ

μ λ μ μ ξ ξ ξ

′ ′ ′= + + + + + + + +

′ ′+ + +
 (6) 

( ) ( )
( ) ( ) ( )

2 4 2 2 2 2 2

11 1 2 3 0 2 3 2 3

2 2

12 1 2 3 0 0 1 2 0 0 3

, ,

, ,

N

N

ξ ξ ξ μ ξ βξ ξ ξ γξ ξ

ξ ξ ξ λ μ ξ ξ μ ξ μ ξ

= + + +

′= − + +
 (7) 

Here β  and γ  are equal to ( )0 0 0 0
μ λ μ μ′+ +  and ( )0 0 0 0

2 2μ λ μ μ′ ′+ + , respectively. The magnitude of the vec-

tor ( )1 2 3
, ,ξ ξ ξ  is denoted as ξ . Other components of the tensor ijN  can be obtained by cyclic permutation of 

indices 1, 2, 3. After solving Eqs(3) with respect to ijε ∗
 the strains within the precipitate can be obtained as fol-

lows [2] 

ij ijkl klSε ε ∗= (8) 

The strains outside the inclusion can be obtained by the similar formula [2] 

( ) ( )ij ijkl klr D rε ε ∗=� �
(9) 

with the following components of the tensor ijklD  [1,2] 
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 (10) 

Here y  is the magnitude of vector ( )1 1 2 1 3 3
/ , / , /y x a x a x a=� , iζ  is equal to ij jA ζ ′  with the following transition 

matrix 

1 2 2 1 2

1 2 2 1 2

1 1

cos cos sin sin cos

cos sin cos sin sin

sin 0 cos

A
α α α α α
α α α α α

α α

−� 
� �= − −� �
� �
� �

 (11) 

where 
1

α  and 
2

α  are the zenith and azimuth angels of vector y� . Eqs(3),(8),(9) give the solution of the problem 

of searching for the strain caused by precipitate within the framework of the proposed precipitate model. 
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To perform model calculation of the stress-deformation state caused by the precipitate one should know the 

precipitate eigenstrain 0ε . Therefore, the next section is devoted to eigenstrain estimation. 

3 The estimation of the oxygen-containing precipitate eigenstrain 

a) b) 

Figure 2. a) The TEM image of precipitate-dislocation loops complex; 

b) The geometrical characteristics of precipitate-dislocation loops complex (PR – precipitate, DL – dislocation loop). 

To estimate precipitate eigenstrain 0ε  let us consider the precipitate-dislocation loops complex (Figure 2a) aris-

ing on later stages of multistage silicon wafers thermal treatments. Since the investigated complexes have a sta-

ble configuration it is reasonable to assume that the force pdF  acting on the first dislocation loop in the complex 

from the precipitate is opposite and equal to the force ddF  acting on it from the nearest dislocation loop [3], 

namely 

pd ddF F= (12) 

Since both pdF  and ddF  are rapidly decreasing functions of the distance the following asymptotic estimates are 

valid [2,3] 

2

4 4
,

p d d
pd dd

pd dd

m m m
F F

r r
≈ ≈  (13) 

Here pm  and dm  are coefficients of proportionality depending on the precipitate and dislocation loops charac-

teristics, pdr  and ddr  are the distances between the precipitate and dislocation and between two dislocations 

(Figure 2b). The simple dimensional analysis [3] allows to obtain the following estimates of pm  and dm

3
2 ,p p d dm S a m S bε ∗≈ ≈  (14) 

where pS  is the precipitate sectional area in the plane ( )001 , dS  is the area of the dislocation loop and b  is the 

Burgers vector of the dislocation loop. The estimate of “equivalent eigenstrain” ε ∗  can be obtained from Eq.(4) 

and has the following form 

01

0

E
E

ε ε∗ ≈ (15) 

where 
0

E , 
1

E  are the Young modulii of matrix and inclusion, respectively. 

Finally, substituting Eqs(13),(14),(15) into Eq.(12) one obtains 

4 4

0 0 0

1 3 1 3
2 2

p pd pd

d dd dd

S r rE Eb b
E a S r E a r

ε
�  � 

≈ ≈� � � �
� � � �

 (16) 

where we take into account that the area pS  is approximately equal to the area dS . 

Eq.(16) gives the estimate of the precipitate eigenstrain. The estimate of oxygen-containing precipitates eigen-

strains obtained from Eq.(16) after performed an analysis of a set of precipitate-dislocation loops complexes is 

equal to 6%  [3]. This estimation is used in the next section to perform calculations of the stress-deformation 

state caused by a precipitate. 
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4 The results of the calculations 
Since the dislocation loops nucleated by the precipitate lie at the crystallographic plane ( )001  the stress-

deformation state at this plane are of interest. The results of the calculations of the normal strain tensor compo-

nents at the plane ( )001  are given in Figure 3. Figure 3 shows that the strains caused by an oxygen-containing 

precipitate are highly non-uniform and have maximal value at the external surface of the precipitate. Therefore 

the most probable place for dislocation loop nucleation is the vicinity of the precipitate surface. 

a) b) 

c) 

Figure 3. The isolines of strains caused by the precipitate at the plane (001) a) 
11

ε (%); b) 
22

ε (%); c) 
33

ε (%). In the figures 

due to the symmetry the quarter of the precipitate is presented. 

5 Conclusion 
The model of the oxygen-containing precipitate buried in a silicon wafer accounting for the anisotropy of the 

silicon matrix, external loading and the difference of the precipitate and silicon wafer elastic constants is pro-

posed. A method for estimation of the precipitate eigenstrains based on analysis of the precipitate-dislocation 

loops complexes arising on the later stages of the silicon wafers thermal treatments is developed. The proposed 

precipitate model and method for eigenstrain estimation are used for calculation of the stress-deformation state 

caused by an oxygen containing precipitate. 

This study was supported by the Russian Foundation for Basic Research (Project No.08-02-01080). 

6 References 
[1] Goldstein R.V., Mezhennyi M.V., Milvidskii M.G., Reznik V.Y., Shushpannikov P.S. and Ustinov K.B.: 

The experimental and theoretical investigation of the oxygen-containing precipitate – dislocation loops 
complex formation process (in Russian). Preprint IPMech RAS, 808 (2007). 

[2] Mura T.: Micromechanics of defects in solids. Martinus Nijhoff Publishers, Dordrecht, 1987. 

[3] Goldstein R.V., Mezhennyi M.V., Milvidskii M.G., Reznik V.Y., Shushpannikov P.S. and Ustinov K.B.: 

Evaluating intrinsic deformations in oxygen-containing precipitates. Technical Physics Letters, 34 (2008), 

106-108.  

2559

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume


