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Abstract. Controlled microbial activity is the core of many industrial processes that require 
efficient, cheap and clean bio-chemical transformation of input products. Two examples are yeast 
fermentation and composting process carried out by multi-species microbial ecosystems. Both 
processes have been widely studied and modelled in order to better understand, predict and control 
the evolution of industrial systems from a given initial state. Most of the existing models are 
population based continuous approaches (top-down). An alternative approach is Individual-based 
Modelling (bottom-up). INDISIM is a discrete and spatially explicit Individual-based Model. It 
sets the rules that govern each microbe and its interaction with its local environment and 
neighbouring microorganisms. The physical space is divided into spatial cells, and the 
environmental processes are also locally defined. Then it performs simulations including a large 
number of microbes, and the behaviour of the whole system emerges as a result of these 
simulations. In this study, we present some examples of specific contributions of INDISIM to the 
modelling of fermentations and composting processes with special attention to the challenges 
faced by continuous models in dealing with (i) microbial activity, (ii) environmental conditions 
and processes, and (iii) external manipulation. 

1 Introduction 
Controlled microbial activity is the core of many industrial processes that require efficient, cheap and clean bio-
chemical transformations of input products. Two examples of industrial applications that are increasingly being 
studied in order to improve their efficiency are yeast fermentation and multi-species composting processes. The 
improvement of processing methods often requires the scaffolding provided by quantitative models. 

Modelling of fermentation and composting processes involves the description of both the microbial kinetics and 
the bioreactor performance. Such models face some sticky issues, such as dealing with microbial heterogeneity 
and different metabolic reactions occurring inside the microorganisms, and also covering the diversity of 
processes that take place in the environment in different spatial and temporal scales. Furthermore, observations 
made in the laboratory are not easily extrapolated to industrial systems because the processing may be very 
sensitive to environmental and performance conditions. All these factors suggest that these kinds of processes 
are explained by coarse reduction only with difficulty. 

A complete model of such processes would entail the description of each volume element in the bioreactor, 
together with the monitoring of every chemical reaction of each individual cell in the population. This is 
practically impossible, and probably also worthless. Therefore, simplifications must be introduced, e.g., 
assuming no concentration gradients throughout the bioreactor, simplifying the individual metabolic networks or 
considering the population as a whole and all the individual cells acting similarly. The degree of detail to be 
included in a model depends on the model application and the questions addressed. All in all, the study of 
microbial processing applications  requires a balanced description of both the bioreactor and the microbial 
community.   

The mechanistic modelling of microbial activity through an individual-based approach has proved to be a 
powerful tool to deal with this kind of system. Such an approach is based on the description of the behaviour of 
each microbe. It accounts for the cellular morphology and metabolism, and considers both cell variability among 
the population and  uncertainty about individual behaviour. It models bioreactor performance by describing the  
external flow patterns and the mass transfer processes inside the reactor. 

1.1 Mathematical modelling of yeast fermentations 
Ethanol fermentation is the biological process in which organic matter is converted by microorganisms into 
simpler compounds, such as sugars, which are further fermented to produce ethanol and CO2. There is a great 
deal of information on fermentation processing available in the literature, including specific reports and reviews 
[14]. Many bacteria, yeasts and fungi have been reported to be successfully employed to produce ethanol, 
although historically the yeast Sacchaomyces cerevisiae is the most used species. This yeast can grow on simple 
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sugars such as glucose, and also on disaccharide sucrose. We will restrict ourselves to the former process in this 
study.  

Additionally, the asexual reproduction of yeast facilitates reasonably fast growth, and it is normally used in 
industrial processes. There are two means of vegetative reproduction: through the production of buds and 
through the formation of cross-walls in single cells. We are concerned here with budding reproduction [19]. 

Existing models to study microbial activity can be classified into different categories. Structured models account 
for various chemical components and their interactions within the cell. By contrast unstructured models are 
based on the simplifying assumption that detailed modelling of intracellular behaviour is not essential to describe 
cell growth. Segregated models account for differences between individual cells in terms of properties such as 
cell mass, size or age. Unsegregated models are based on the simplifying assumption that individual cells have 
identical physical and chemical properties [21]. Unstructured and/or unsegregated models are easier to handle 
and analyze but give a poor description of transient operating conditions. Control models for routine operation of 
industrial fermentations are often based on simple unstructured and/or unsegregated models. Nevertheless, yeast 
populations are typically heterogeneous with respect to individual cell properties (e.g. biomass composition, 
genealogical age, cell size, vitality, et al.). Therefore if a better description is required, segregated and structured 
models are built by introducing more intracellular variables and/or characteristics.   

Various kinetic models have been proposed in the literature for freely suspended yeast cells in either batch or 
continuous operation [14, 15]. These models have been used to predict the influence of well-defined operating 
parameters on the measurable outcome of the processing system: e.g., cell concentration, substrate utilization 
rate, and ethanol production rate. However, many issues can not be tackled through kinetic models. For instance, 
although four hindrances (substrate limitation, substrate inhibition, product inhibition, and cell death) are known 
to affect ethanol fermentation, none of the models reviewed by Lin and Tanaka [14] accounts for these kinetic 
factors simultaneously.  

We can divide the large number of reactions occurring during yeast growth and ethanol formation into three 
types: i) substrate uptake, ii) intracellular reactions, i.e., conversion of intracellular substrates into biomass 
components and metabolic products, and iii) product excretion, i.e., transport of the metabolic products across 
the cytoplasmic membrane. Many models use the Monod equation in a modified form in order to take into 
account the inhibiting effect of the end product, the substrate or the self-inhibition. Equations proposed to model 
the inhibiting effects on yeast growth and population dynamics can be linear, exponential, or hyperbolic. They 
may consider a critical concentration of the inhibitors above which cell growth is impeded, or other kinds of 
influence. There are also far more descriptions of product formation velocity by means of equations similar to 
those that describe cellular growth. The most general equation describing the kinetics of substrate consumption 
takes into account the consumption of substrate in the formation and maintenance of biomass and the formation 
of ethanol. However, the various equations found in the bibliography have been proven to be contradictory [15]. 

1.2 Mathematical modelling of composting process 
The composting process has been defined as ‘the biological decomposition and stabilization of organic substrates 
under such conditions that allow the development of thermophilic temperatures as a result of biologically 
produced heat, with a final product sufficiently stable for storage and application to land and without adverse 
environmental effects’ [9]. Such a long and detailed definition suggests that we are dealing with a complex 
process, in which many agents (microorganisms) are involved and which must occur under very controlled 
conditions.  

Organic matter transformation processes by microbial activity are of great importance in the waste treatment 
industry, since present day society produces a huge amount of organic wastes that must be treated. In particular, 
the composting process gives an added value to these wastes because the resulting product can be reused as  
fertilizer. For this reason, the composting process has been studied for many years with both practical and 
theoretical approaches.  

Mathematical models of the composting process have appeared in the literature since 1976 [16,10]. Most of them 
are based on the solution of coupled heat and mass balance equations in time from a macroscopic point of view 
[12], although the number of models that start from the microbial activity is increasing [13,18]. Usually, they are 
lumped parameter models; that is, they consider the reactor content as a whole and set the global balance 
equations [13], although some of them may explicitly distinguish among solid, liquid and gaseous phases [18]. 
Several authors have introduced spatial heterogeneity in their models, in order to take into account different 
spatially distributed factors [2].  

None of these models can predict the evolution of all the involved variables simultaneously (temperature, 
moisture content, oxygen concentration, CO2 production, microbial biomass, substrate composition and water 
vapour, among others) [16]. Moreover, a composting model should be versatile enough to reproduce the 
enormous pool of possible states that occur in a real composting pile. This would be possible with a model that 
encompassed the process from the microscopic microbial activity to the macroscopic ventilation processes. It 
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would need to cover the mass transfers among the different compounds and among the three phases, and also 
make possible the study of spatial heterogeneity. 

1.3 Individual-based Models and INDISIM 
Both of the above-mentioned processes, fermentation and composting, have been widely studied and modelled in 
order to better understand, predict and control the evolution of industrial systems from a given initial state. Most 
of the existing models are population-based continuous approaches (top-down). They describe the population 
dynamics and the changes in the concentration of relevant extracellular compounds using differential equations. 
As has been shown, this mathematical modelling approach to fermentations and composting processes provides 
a wide pool of useful and interesting results, but is limited by the inherent complexity of the systems under 
study.  

An alternative approach is Individual-based Modelling (bottom-up). Continuous models and Individual-based 
Models (IbMs) are not exclusive but rather complementary methodologies: both have strengths and weaknesses 
that can be profited and which counterbalance each other [3].  

INDISIM is a discrete and spatially explicit IbM. First, the rules that govern each microbe and its interaction 
with its local environment and neighbouring cells are set. The physical space is divided into spatial cells, and the 
environmental processes are also locally defined. Then, this model is implemented in an INDISIM simulator. 
Simulations including a large number of microbes are performed, and the behaviour of the whole system 
emerges as a result. INDISIM was initially developed to study bacterial cultures [4], and it has shown to be 
versatile and useful to deal with other kinds of microorganisms. INDISIM-YEAST [6,7] and INDISIM-COMP 
[9] are two applications focused on the study of yeast fermentations and composting processes, respectively. 

INDISIM allows individual differentiation with regards to microbial biomass morphology, composition and 
functionality. It is also spatially explicit, so it allows modelling of the environmental non-isotropic processes that 
may produce spatial heterogeneity. Moreover, the condition of IbM facilitates the simulation of external 
manipulations, either continuous, discrete or punctual. It is a versatile tool that, once built, can be applied to the 
study of different configurations and operating regimes of the bioreactor with slight modifications.  

In this study, we present some examples of INDISIM’s specific contributions to the modelling of fermentations 
and composting processes. In particular, we pay special attention to how it deals with the challenges faced by 
continuous models in dealing with (i) microbial activity, (ii) environmental conditions and processes and (iii) 
external manipulations. Different aspects of this modelling exercise are discussed in the context of our 
methodology and some preliminary simulation results are presented. 

2 INDISIM-YEAST 
A detailed description of the simulator can be found in previous works [6,7]. Some key ideas to connect with the 
simulation results are presented below.  

2.1 Modelling the medium 
We assume that yeast grows in the bulk of a liquid medium. It is locally described by variables that are space and 
time dependent. They control the amount of the abiotic components glucose (the nutrient particles) and ethanol 
(the end product particles) relevant to yeast cellular activity. The spatial simulation domain is a 10x10x10 three-
dimensional grid composed of cubic cells in which the number of yeast cells, glucose and ethanol particles is 
controlled at each time step. The extracellular concentration of substances varies as glucose particles are 
consumed and ethanol is excreted by the yeast cells. Some manipulation tasks on the system can be performed: i) 
for a closed system – e.g., a batch culture – with no entry or exit of individual yeast cells and/or substrate 
particles from the outside, stirring is represented as the homogeneous redistribution of particles; ii) for an open 
system – e.g., a fed-batch or a continuous culture – external fluxes are represented as the entry and/or exit of 
individual yeast cells and/or substrate particles into/out of the space domain. The use of immobilized yeast cell 
systems will be investigated in the near future.  

2.2 Modelling a single yeast cell 
At each time step, each single organism (individual yeast cell) is defined by a set of parameters and time-
dependent variables that represent relevant properties: its position in the spatial domain; its biomass (volume or 
size assuming spherical shape); its genealogical age as a number of bud scars on the cellular membrane; the 
reproduction phase in the cellular cycle where it is, namely Phase 1 – the unbudded and Phase 2 – the budding 
phase; its “start mass”, i.e., the mass needed to change from the unbudded to the budding phase; the minimum 
increase in biomass for the budding phase; the minimum time required to complete the budding phase; and its 
survival time without satisfying its metabolic requirements. Some of these are fixed when the yeast cell is set, 
and others are modified at each time step. Randomnesss is introduced when setting their initial values in order to 
represent individual variability.  
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Additionally, every microorganism must follow a set of rules that account for its activity: motion; uptake of 
glucose and excretion of ethanol; cellular maintenance; production of new biomass; budding reproduction; cell 
viability; and death. Randomnesss is introduced when the rules are applied to represent uncertainty in the 
individual course. 

1 Uptake: the simulator takes into account that the nutrient uptake is affected by the number of bud scars, 
since they reduce the cellular membrane’s effective surface. For the moment, it only considers glucose 
as nutrient and ignores the consumption of ethanol by the cells, and consequently diauxie is never 
presented. Other substances, such as nitrogen, oxygen, carbon dioxide and ammonium have been 
considered to be non-limiting in this study and are not introduced in the simulator yet.  

1 Reproduction: during the unbudded phase the yeast cell gets ready for budding. It enters the budding 
phase once it has attained a minimum cellular mass, the “start mass”, and a minimum increase in 
biomass. The budding phase lasts until two conditions are fulfilled: a minimum time interval must go by 
to allow the DNA replication and a minimum amount of biomass must be created. 

1 Viability: the factors that may limit nutrient uptake are (i) ethanol excess; (ii) low glucose 
concentration; (iii) insufficient surface-to-volume ratio; and (iv) excessive number of bud scars 
(genealogical age). A deficient nutrient uptake may not satisfy the energy requirements for cellular 
maintenance. The viability of each individual yeast cell is checked at each time step, and unviable cells 
are removed from the list of active cells. 

2.3 Some simulation results 
Some simulation results are presented below with the objective of illustrating the possibilities opened up by 
INDISIM-YEAST. They should be taken as preliminary results of topics to be further investigated in depth. 

INDISIM-YEAST was been initially applied to model and simulate the behaviour of a stirred batch culture (no 
entry/exit of culturing broth or yeast cells). Therefore, the relation between the cellular activity, the population 
and the concentration of substrate/product is straightforward. The closed system allows limitation due to product 
excess inhibition or to nutrient scarcity. Stirring the culture allows not having to consider local diffusion 
limitations. 

Microbial activity.   Some kinetic models represent the evolution of such cultures making an explicit reference 
to different population growth phases: lag phase, exponential growth phase, stationary phase and mortality 
phase. They may use different sets of equations to describe the system, one for each of the growth phases. The 
rules governing the individuals stated by INDISIM-YEAST remain the same throughout the culturing course, yet 
the population growth patterns depend on the state of the system. Thus, these phases naturally emerge from the 
collective behaviour as time goes by. Figure 1 shows the population growth curve of a batch culture, and five 
stages can be distinguished and related to cellular activity: i) lag phase with zero growth (when the inoculum 
cells adapt to their new environment growing in biomass but without reproduction); ii) exponential growth phase 
with maximum specific growth rate (cells grow with no limitation); iii) linear phase with limited growth rate 
(when the progressive accumulation of ethanol and scarcity of glucose hinder cell uptake, yet do not impede cell 
viability and growth); iv) metabolic slowdown phase (cell viability is strongly hindered and generalized 
mortality takes place); v) final stage with no population growth (only a few viable cells can keep on 
metabolizing nutrients, mainly to preserve their biomass). 
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Figure 1. Time dependence of yeast cells in the simulated yeast fermentation culture.  

Evolution of the yeast population: lag phase (0-40 time steps), exponential phase (40-400 time steps),  
linear phase (400-600 time step), metabolic slow down (600–1000 time steps),  

and final phase (1000-1200 time steps), approximately. 
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Another example of the effects of population structure on system performance, with regards to microbial 
activity, is the way in which the distribution of the number of bud scars among the population affects the 
duration of the cellular growth cycles. 

The simulator saves information about every cell at each time step. This information makes possible the 
construction of box-and-whisker plots for different variables, in this case for the duration of the cellular cycle 
depending on the genealogical age of the cells (number of scars). In S. cerevisiae budding reproduction leads to 
the formation of scars in the mother cell, ridges on cell membrane left by the bud. Moreover S. cerevisiae cells 
divide asymmetrically: daughter cells, produced from the bud, are smaller than mother cells. In Figure 2 we 
present the durations of Phase 1 and Phase 2 as a function of the number of scars on the cell membrane at a 
fixed moment of the fermentation (time step 600). The figure shows that cells with no scars have longer Phase 1 
periods, while these periods remain more or less constant for cells with one scar or more. This can be explained 
through the asymmetric cell division process: before reaching their  “start mass”, daughter cells must increase 
their biomass by a greater amount. The dependence of  the duration of  Phase 2  on the number of scars can also 
be explained in some cases using similar morphological arguments, because the surface-to-volume relation 
varies with cell age. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Boxplots of the durations of the unbudded interval (Phase 1) and budding interval (Phase 2) as a function of the 
genealogical ages of the yeast cells at step 600 of the simulated yeast culture shown in Figure 1. 

The possibility of estimating the variation of a population, not only in number or biomass, but also in age, would 
favour the proposition that the production capacity in each cell depends on its cellular cycle state, its vitality and 
its ageing. The mathematical treatment of these cases to be integrated in kinetic models is complex and presents 
some difficulties. For instance, the industrial production of beer reuses yeast cropped at the end of fermentations 
in subsequent fermentations and it has recently been suggested that the distribution of the cell age on cropping 
may affect both the immediate and the long term fermentation performance. INDISIM-YEAST is an attractive 
tool to deal with this question due to the elements that make up the simulation model [8].   

Environmental conditions and processes.   If the individual yeast cells experience varying environmental 
conditions, then their intracellular composition or individual characteristics may consequently differ. This results 
in a distribution of cells with varying properties, and the distribution is determined by the environmental 
conditions. These individual properties can change during the course of the batch fermentation process.  

Figure 3 shows the temporal evolution of the average duration of Phase 1 for both daughter and parent cells. The 
use of confidence intervals allows us to indicate both the variability present in each set of data and the size of 
those sets, namely the data available from the simulations. The mean duration of daughter cells is consistently 
higher than that of parent cells; the difference increases with the evolution of the system. Both groups of cells 
show a smaller increase in duration of Phase 1 during the first time steps. Thereafter it increases almost linearly; 
a reflection of the fact that, as time goes by, they are subjected to increasing inhibiting factors in the production 
of new biomass. For the parent cells the duration remains practically constant during the time steps 
corresponding to exponential growth. Daughter cells are more sensitive to the conditions of their environment, as 
they require a larger mass increase during this phase.  

Despite the simplifications assumed by this model, the results achieved to date are at least in qualitative 
agreement with the experimental observations [19]. 
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Figure 3. Temporal evolution of the 95% confidence intervals for the mean duration of the unbudded interval (Phase 1) of 
the cells in the simulated yeast batch culture shown in Figure 1, using separate plots for parent and daughter cells. The 

different stages of the batch culture are represented at several points: lag, where no reproduction takes place, exponential 
phase (100-400 time steps), linear phase (500-600 time step), metabolic slow down (700-900 or 1000 time steps), and final 

phase without reproduction. 

 

External manipulations.   In industrial application of fermentation processes, fed-batch operating protocols are 
widespread. Small variations in the operating conditions result in dramatically different behaviour of the 
microbial population and therefore of the bioreactor performance. This can not be easily described by 
unstructured or unsegregated models. This is usually solved by adding one or more correction factors to these 
models, leading to models of increased complexity that might include uncorrelated factors that are biologically 
difficult to interpret. Structured and segregated models consider the changes in the state of the cells, and may 
therefore provide a good description of a whole set of experiments (running under different operating 
conditions). These models are valuable when examining the microbial behaviour at the cellular level, but of less 
value to the biochemical engineer examining the performance of a fermentation process carried out in 
bioreactors. 

The initial culture volume and glucose concentration, the feed flow rate and glucose feed concentration profiles 
and the final batch time are treated as decision variables in the dynamic performance optimization problem of a 
fed-batch culture. We have used INDISIM-YEAST to simulate fed-batch cultures operating under different 
conditions.  In particular we modified the feeding frequency (F) and the amount of incoming glucose particles 
per feed (D). Figure 4 shows the ethanol production of fed-batch cultures with the same initial conditions and 
varying the operating regime: different combinations of frequency and amounts of glucose that result in the same 
quantity of glucose supplied to the system. Although the overall quantity of particles of glucose is the same in all 
cases, the final ethanol productions differ from case to case. INDISIM-YEAST simulations are used here as 
virtual experiments designed to test  different proposed culturing protocols.  

In conventional batch and continuous yeast cultivation systems, cell populations are randomized with respect to 
individual cell cycles. Non-random, or synchronous, yeast cultures are characterized by cells in the population 
dividing more or less in unison. The synchronization of yeast cell populations is an important experimental tool 
which greatly assists the biochemical analysis of cell cycle events. Synchronous yeast cultures may also have a 
lot of potential in biotechnology; for example, in optimizing yeast metabolite and cell cycle-modulated protein 
production. Following the experimental protocols or procedures for the induction of yeast synchronization, such 
as feeding and starving, periodic feeding or dilution rate changes in chemostat cultures [20] could be tested with 
INDISIM-YEAST. Many researchers have shown that continuous cultures of S. cerevisiae exhibit sustained 
population oscillations in glucose limited environments under aerobic growth conditions. Understanding and 
controlling this dynamic behaviour would lead to important advances in yeast production processes and could 
provide key insights into the cellular behaviour. A number of transient models have been proposed to explain the 
sustained oscillations regimes. Structured, segregated models have been developed, and a population model that 
considers the asymmetric yeast reproduction cycle must be incorporated to successfully account for this 
oscillatory behaviour [21,11]. We think that INDISIM-YEAST has in its own formulation the required elements 
to deal with the study of these phenomena.  
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Figure 4. Temporal evolution of ethanol particles of the simulations with several  
Frequencies (F) of entry of substrate and densities (D) of glucose particles. 

 

3 INDISIM-COMP 
A specific simulator, INDISIM-COMP, was built in order to deal with composting process modelling and 
simulation [9]. It was developed taking into account the experience obtained from another INDISIM application 
to deal with soil organic matter, INDISIM-SOM [5]. This was the first individual simulation model that enabled 
us to study microbial activity in soil, to study the mineralization and immobilisation of C and N, and the 
integration of the nitrification process in that context assuming two different prototypes of cells, the decomposer 
microorganisms and nitrifying bacteria. INDISIM-COMP shares some of these ideas and incorporates new ones. 

3.1 Modelling the environment 
In the reported results, the composting process of 1 g organic matter during 300 hours is simulated. The space is 
discretized in a two-dimensional 30x30 vertical grid, with the spatial cell being the basic spatial unit. Each 
spatial cell has a particular composition and a local temperature that vary according to microbial activity and 
spatial fluxes (Figure 5). The substances considered in the system are labile organic compounds, polymerised 
organic compounds, resistant organic compounds, stable organic matter and other mineral compounds and gases. 
They are detailed in Table 1. 

 

Figure 5. Spatial grid and sketch of the considered spatial processes. 
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Nomenclature Group Component Composition 

ORGANIC COMPOUNDS 

Labile carbon CL Short carbon chains 
(e.g. monosaccharide) C6H12O6 

Labile nitrogen (CN)L 
Short chains with C/N=3 

(e.g. amino acids) C3H7O2N 

Polymerised carbon CP 
Polymers in labile forms 

(e.g. starch, cellulose) n1(C6H10O5) 

Polymerized nitrogen (CN)P 
Proteins and other compounds with 

C/N=3 n2(C3H5ON) 

Resistant carbon CR 
Complex carbon chains 

(e.g. lignins) n4(C20H30O6) 

Stable organic matter CNSOM Stable organic matter with C/N=12 n3(C12HxOyN) 
MINERAL COMPOUNDS 

Ammonium NH4
+ - NH4

+ 
Water (H2O)liquid - H2O 

Water vapour (H2O)vapour - H2O 
Carbon dioxide CO2 - CO2 

Oxygen O2 - O2 

Ammonia NH3 - NH3 

 
Table 1. Organic and mineral compounds considered by the model. 

The environmental processes modelled in INDISIM-COMP are: 

1 Aeration: output flow of CO2 and H2O vapour, and input of O2 
1 Diffusion of the soluble organic labile forms and mineral compounds in the medium 
1 Hydrolysis of complex compounds into labile forms, conducted by actinomycetes and fungi present in 

the surroundings  
1 Water evaporation 
1 Heat conduction 
1 Heat transfer processes linked to water evaporation and aeration 
 

3.2 Modelling the microorganisms 
Three kinds of microorganisms are considered: mesophilic bacteria, thermophilic actinomycetes and mesophilic 
fungi. They differ in their microbial biomass composition (CNmic-bac, CNmic-act and CNmic-fun, respectively), their 
shape, their optimum temperature range and their metabolism (Table 2). The microbial activity is modelled on 
the individual scale, taking into account the following individual actions and processes: 

1 Motion: bacteria can move from a spatial cell to a neighbouring one; actinomycetes and fungi remain 
fixed. The bacterial motion is given by a maximum movement radius, dmax, and a probability of doing 
so, pmov.  

1 Uptake: microorganisms can uptake the substances in their spatial cells. The compounds that a certain 
microorganism may uptake depend on its biomass C/N relationship that must be kept. No internal 
reservoirs are considered. The quantity of uptaken substances is given by the medium availability, Aij 
(j={substrate classes}, i={bac,act,fun}) and the limitations of the microbial membrane surface (thus, it 
depends on the microbial geometry). The resulting individual maximum uptake rate is adjusted by using 
the empirical Ratkowsky relationship which gives a growth dependence on temperature [17]. 

1 Metabolism: it is heterotrophic and specific for each microorganism and each substrate. Table 3 
summarizes the explicit metabolic pathways considered. Biological heat production is considered and 
specifically defined for each metabolic path. Metabolism allows the microorganisms to satisfy the 
individual maintenance requirements and to increase their biomass. The resultant waste products are 
dumped into the medium. 

1 Reproduction: the model for the reproduction cycle is based on I+C+D [1]. When the microorganisms 
reach a fixed mass, mR, the division cycle begins. It has a determined duration, tR. After this period, two 
individuals with similar characteristics and masses appear in the same spatial cell or in one of its 
surrounding cells. 

1 Death and lysis: whenever the medium conditions are adverse, the microorganisms may not be able to 
uptake enough nutrient to satisfy maintenance requirements. In these cases, they metabolize their own 
biomass to survive, and the individual mass decreases. When a specific minimum biomass is reached 
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the microorganism is in lysis and returns some compounds to the local medium (CNSOM, NH4
+, CP an 

(CN)P). 

Figure 6 summarizes both the microbial and spatial models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Sketch of the microbial model and some environmental processes. 

 

 Mesophilic bacteria Thermophilic  
actinomycetes Mesophilic fungi 

Group CNmic-bac CNmic-act CNmic-fun 
Composition C5H7O2N C5H7O2N C10H17O6N 

Shape Bacillus Filaments Filaments 
Metabolism See Table 3 

 
Table 2. Microbial differentiation in INDISIM-COMP. 

 

Bacterial metabolism  

CNL + (1/3 Y11) CL
 + 6Y11O2 L CNmic-B + 6Y11CO2 + (2+6Y11) H2O + Y11Q1 (1) 

(5/6+Y12) CL
 + NH4

+ + (1/4+6Y12) O2 L CNmic-B + 6Y12CO2 + (7/2+6Y12) H2O + Y12Q1 (2) 

Actinomycete metabolism  

CNL + (1/3+Y21) CL
 + 6Y21O2 L CNmic-A + 6Y21CO2+ (2+6Y21) H2O + Y21Q1 (3) 

(5/3+Y23) CNL + (11/4Y23-1/6) O2 L CNmic-A + (2/3+Y23) NH4
+  + 3Y13CO2 + (3/2Y23+1) H2O  + Y23Q2 (4) 

(5/6+Y24) CP + n1 NH4
+ 

+ (1/4+6Y24) n1O2 L n1CNmic-A  + 6Y24n1CO2 + (8/3+5Y24) n1H2O + Y24n1Q1 (5) 

(5/3+Y25) CNP + (2/3-1/2Y25) n2H2O + (11/4Y25-1/6) n2O2 L n2CNmic-A + (2/3+Y25) n2NH4
+
 + 3Y25n2CO2 + 

Y25n2Q2 
(6) 

Fungal metabolism  

CNL + (7/6+Y31) CL + (6Y31-1/2) O2 L CNmic-F + (2+6Y31) H2O + 6Y31CO2 + Y31Q1 (7) 
(5/3+Y32) CL + NH4

+
 + (6Y32-1/4) O2 L CNmic-F + (7/2+6Y32) H2O + 6Y32CO2 + Y32Q1 (8) 

(5/3+Y34) CP + n1 NH4
+  + (6Y34–1/4) n1O2 L n1CNmic-A + 6Y34n1CO2 + (11/6+5Y34) n1H2O + Y34n1Q1 (9) 

(10/3+Y35) CNP + (29/6-1/2Y35) n2H2O + (11/4Y35–13/12) n2O2 L n2 CNmic-F + (7/3+Y35) n2NH4
+
 + 3Y35n2CO2 + 

Y35n2Q2 
(10) 

(1/2+Y36) CR + n4NH4
+ + (2+(49/2)Y36) n4O2 L n4CNmic-F + 20Y36n2CO2 + (1+15Y36) n4H2O + Y36n4Q1 (11) 

 
Table 3. Explicit metabolic pathways for each microorganism class and substrate. 
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3.3 Some simulation results 
Some simulations results are presented below to illustrate the possibilities opened up by INDISIM-COMP. They 
should be taken as preliminary results of topics to be further investigated in depth.  

Microbial activity.   In composting systems there is a characteristic behaviour: the population’s succession. In 
the first stages the mesophilic bacteria grow and their activity increases the temperature. Then, when the 
temperature is high enough and the labile compound concentration has decreased, the bacterial concentration 
decreases too and it is the turn of termophilic actynomycets and mesophilic fungi. When these populations 
decrease and so does the temperature, the bacteria grow again. 

INDISIM-COMP simulations reproduce the population succession which is not explicitly imposed in the 
microbial model. The individual treatment of microbial cells allows specific modelling of each species, with 
specific rules. Every cell evolves individually, receiving the influence of the surrounding individuals through the 
neighbouring environment. The global behaviour arises from the evolution of these cells, and the population’s 
succession is observed. In Figure 7 we can see an example of this: Figure 7a shows the evolution of the total 
biomass, and in Figure 7b we can distinguish among the three populations. 

 

 

 

 

 

 

 

 

 

Figure 7. Simulation results that show the evolution of the global microbial population (a) and the evolutino of each kind of 
population (b) during a composting process. 

 

Environmental conditions and processes. External manipulations.   The simulated space is explicit: it is 
divided into spatial cells and we controlled the characteristics of each one. The cells interact with the medium by 
uptaking substrate particles and bumping into it the products of their metabolism. The simulations explicitly 
show the evolution of these compounds with regards to their concentration and spatial distribution. Moreover, 
the cells’ metabolism heats the surrounding medium. This heating is modelled, as well as the heat conduction 
and the heat transfer through water evaporation. In Figure 8 we find an example of this: it shows the evolution of 
the temperature during a simulated composting process. We can observe the initial increase due to the microbial 
activity, followed by stabilization when the microbial activity decreases. 

External manipulations may be also introduced. In Figure 8 the effect of the system aerations is shown: in this 
case, it was determined that an automatic aeration would take place when the temperature was over 50ºC. Thus, 
the observed oscillations in temperature evolution correspond to automatic aerations of the system when this 
condition is accomplished. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Evolution of the temperature in a simulated composting process.  
The effect of discrete aerations is seen as discrete decreases in temperature. 
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4 Conclusions 
We have presented two modified versions of INDISIM addressed to model (i) ethanol fermentation carried out 
by S. cerevisiae  in a liquid medium and (ii) organic matter composting process carried out by complex microbial 
ecosystems in industrial bioreactors. Both applications are still under development, yet some conclusions can be 
drawn from the preliminary results presented above.  

Yeast fermentation and composting processes have been investigated by a variety of mathematical models that 
have contributed to their control and understanding. The Individual-based approach provides a tool that covers 
heterogeneity in the population, stochasticity in the cellular processes and non-homogeneity or/and anisotropy in 
the environment. It also consists of a basic core that remains appropriate to study microbial systems operating 
under different external protocols. Therefore, it is a complementary approach to population-based models. The 
foremost contribution of INDISIM lies in its ability to deal with each microorganism at an individual level, thus 
providing a very direct connection between the proposed rules and their biological interpretation. It also allows 
the investigation of different mechanisms sepparately. 

Our methodology easily predicts qualitative behaviours on a wide range of individual and population attributes 
which is helpful to get an idea of the relevant variables of a particular problem. INDISIM proposes mechanisms 
through which properties and behaviours observed in bioreactor performance emerge from properties and 
processes occurring at a cellular level. It also allows a detailed description of how the extracellular conditions 
affect the bioreactor outcome. An important advantage of the modular structure of the simulator INDISIM is that 
it allows exploration and modification of different features and procedures of the system under study, which 
permits using the same microbial model to deal with different experimental protocols. However, this 
methodology faces many limitations, mainly related to the difficulty in quantifying the individual microbial 
parameters and those that characterize the local environmental processes.  It is also difficult to handle and hard to 
share applications, as there are no standard protocols to present, document and develop the applications.     

Nevertheless, this study does not attempt to simply highlight advantages and drawbacks of the INDISIM 
methodology, but aims also tp provide different kinds of results that illustrate its possibilities when addressing 
processes of biotechnological interest. 
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