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Abstract: This paper presents a method for modeling and simulation of particular class of 
manufacturing systems. The method is based on so called Machine-Job Incidence Matrix (MJI) 
that is formed from Steward sequencing matrix and Kusiak machine-part incidence matrix. A 
model of the system in a form of MJI matrix is easy to comprehend. It can be put in direct relation 
with other manufacturing systems analysis tools, such as Petri nets and MS matrix model. 
Moreover, structural properties of MJI matrix offer direct insight in the system configuration, 
hence, providing a ground for the system analysis and supervisory controller design. Properties, 
such as circular waits and conflicts, can be determined straightforwardly by using simple matrix 
manipulations, thus, allowing design of sequencing control algorithms. An extension of MJI 
matrix in time domain offers a foundation for determination of recursive equation that can be used 
for simulation of system’s dynamics. Although manufacturing systems have been used for 
validation of the proposed modeling technique, the method can be applied on other discrete event 
systems as well. 

 
1 Introduction 

 
Using today’s classification of systems, manufacturing systems (MSs) can be treated as hybrid systems that 
contain a mixture of various dynamic behaviors—continuous and discrete control loops, Boolean variables 
related to process states, and discrete events, all embraced by a usually hierarchical decision-making overhead. 
This means that an MS structure contains both hard and soft technology, first focused on the product fabrication, 
assembly and distribution, while later the focus is on the support and coordination of manufacturing operations. 
 
The MS’s hard technology is split into several levels – from the factory level via the operating center, workcell 
and robotic station levels to a particular manufacturing process level. The accompanying soft technology is also 
split into several levels – from the highest strategy level, via lower planning, supervisory, and manipulating 
evels to the basic manufacturing task level. l

 
Today, simulation models provide a very inexpensive and convenient way for complete factory design. Instead 
of building real systems, a designer first builds new factory layouts and defines resource configurations in the 
virtual environment and refines them without actual production of physical prototypes. Allowing clear 
understanding of all potential problems caused by the factory layout and/or dispatching strategy, modeling and 
dynamic simulation of manufacturing processes has traced a completely new route to analysis and design of  
MSs [1–3]. Simulation of robotized manufacturing systems has become much easier and more effective with 
specialized programs for virtual-factory modeling and simulation. Many virtual-factory simulators have origin in 
the academia [4–8]. Each of these tools has a mathematical core in a form of an algorithm used to describe 
dynamic behavior of MS elements. In this paper we exploit so called machine-job incidence matrix (MJI) for 

urpose of deriving such an algorithm. p
 
The paper is organized in the following way. In the next section, we describe construction of MJI matrix, which 
is based on two well known matrices: resource requirements matrix [9], also know as machine-part incidence 
matrix (MPI), and Steward sequencing matrix [10], also referred as design structure matrix (DSM). In section II 
an extension of MJI to design of MS recursive simulation model is given, followed by illustrative example. In 
section III the recursive mathematical model of free choice multiple reentrant flowlines (FMRF) is presented in 
detail. We consider FMRF systems with multiple flowlines, where resources can hold an arbitrary number of 
parts simultaneously (k-limited systems). In chapters III.5. and III.6. a mathematical framework that allows 
testing of various control policies during the system simulation is presented. The recursive model forms the basis 
of the developed system simulator, which is presented in chapter IV. We conclude the paper with final remarks 
and an outline for future work. 
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2 Construction of Machine-job incidence matrix 
 

We start with introduction of basic terms that will be used throughout the paper. Let Y be the set of distinct types 
of parts produced (or customers served) by a flexible manufacturing system (FMS). Then each part type Pk8YY is 
characterized by a predetermined sequence of job operations . /1 2 3, , , ...,

k

k k k k k
LJ J J J J�  with each operation 

employing at least one resource. (Note that some of these job operations may be similar, e.g. and i
kJ j

kJ  with i 3 

j may both be drilling operations). We uniquely associate with each job sequence , the operations of raw part-

in, , and finished product-out, . Denote the system resources with

kJ

. / 1

n
i iin

kJ out
kJ R r

�
� , where ri8R can represent 

a pool of multiple resources each capable of performing the same type of job operation. In this 
notation, kR RR

k

k

represents the set of resources utilized by job sequence . Note 

that

kJ
R R

8Y
� Z

l kR R[ 3 \

and  represent all resources and jobs in a particular FMS. Since the system could be 

re-entrant, a given resource r may be utilized for more than one operation  (sequential sharing). 
Also, certain resources may be used in the processing of more than one part-type so that for some {l, k}8 Y, l 3 
k, (parallel sharing). Resources that are utilized by more than one operation in either of these 
two ways are called shared resources, while the remaining are called nonshared resources. Thus, one can 
partition the set of system resources as

k

k
J J

8Y
� Z

8 kR k
iJ J8 k

s nsR R R� Z , with Rs and Rns indicating the sets of shared and 

nonshared resources, respectively, where s sR n� and ns nsR n� , ns + nns = n. For any r8R we define the 

resource job set J(r). Obviously, ( ) 1J r � (> 1) if r8Rns  (r8Rs). The previously defined job set J and resource 

set R are associated with MJI matrix in the form of vectors. A job vector V : J L H and a resource vector R : R 
L H represent the set of jobs and the set of resources corresponding to their nonzero elements. The set of jobs 
(resources) represented by V(R) is called the support of  V(R), denoted sup(V) (sup(R)); i.e. given V = [v1 v2 … 
vq]T, vector element vi >0 if and only if job vi8 sup(V). In the same manner, given R = [r1 r2 … rp]T, vector 
element ri >0 if and only if resource ri8 sup(R). 

 
 MJI matrix, used herein, describes free-choice multiple re-entrant flowline (FMRF) class of manufacturing 
systems [11]. This class has the following properties: each operation in the system requires one and only one 
resource with no two consecutive jobs using the same resource, i.e. ] k

iJ 8J, �R( k
iJ )�=1 and R( k

iJ ) 3 R( 1
k
iJ � ), 

there are no assembly jobs, and there are shared resources in the system. In FMRF some jobs have the option of 
being machined in a resource from a set of resources (routing of jobs), and each resource might be used to 
machine different jobs. For each job that can be performed by more than one resource, there exists a material 
handling buffer (routing resources) that routes parts. A subclass of FMRF systems that does not allow routing of 
jobs, i.e. each job is executed by a single pre-assigned resource, is called multiple re-entrant flowlines (MRF). 
Having defined basic terms we proceed with MJI construction. DSM is a square matrix containing a list of tasks 
in the rows and columns with matrix elements indicating the execution sequence. In case of FMRF systems 
DSM is subdiagonal identity matrix of the following form 

 
  1

1J  1
2J  …. 

1
1
L

J  2
1J  … 

2
2
L

J  … 
1
mJ  … 

m
m
L

J  
 1

1J  0 0 …. 0        

 1
2J  1 0 …. 0        

 … : :  :        
 

1
1
L

J  0 0 …. 0     0   

 2
1J      0       

� = …            
 

2
2
L

J        0     

 …            
 

1
mJ          0   

 …            
 

m
m
L

J            0 
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The order of tasks in the rows or columns indicates the execution sequence. The relationships among the tasks 
are usually represented by ‘1’ in the corresponding cells, i.e. if task j is immediate predecessor of task i then 
DSM element (i, j) is equal to 1, otherwise is zero. The second matrix, used for system description, is MPI. It 
captures relations between resources and parts processed by a system. Generally, MPI has the following form, 

 
  

1R  2R  …. 
qR  

 
1P  0/1 0/1 …. 0/1 

� = 
2P  0/1 0/1 …. 0/1 

 … …. ….  …. 
 

pP  0/1 0/1 …. 0/1 

 
where 0/1 represents entry of 0 or 1 depending on relation between corresponding part and resource: if resource j 
is processing a part i then MPI element (i, j) is equal to 1, otherwise is zero. 
Since the sequence . /1 2 3, , , ...,

k

k k k k k
LJ J J J J�  represents Pk processing order, by combining DSM and MPI 

matrices, we get general form of machine-job incidence matrix for an FMRF system as 
 

  
1R  2R  …. 

qR  
 1

1J  0/1 0/1 …. 0/1 

 1
2J  0/1 0/1 …. 0/1 

 … …. ….  …. 
 

1
1
L

J  0/1 0/1 …. 0/1 

 2
1J  0/1 0/1 …. 0/1 

� = … …. ….  …. 
 

2
2
L

J  0/1 0/1 …. 0/1 

 … …. ….  …. 
 

1
mJ  0/1 0/1 …. 0/1 

 … …. ….  …. 
 

m
m
L

J 0/1 0/1 …. 0/1 

 
 
In case job i is performed by resource j, matrix element (i, j) is equal to ‘1’, otherwise is zero. It should be noted 
that, according to definition of FMRF class of systems, some operation in the system could be executed by 
several resources, hence, multiple ‘1’ would appear in corresponding row of MJI matrix. On the other hand, 
column comprising multiple entries of ‘1’, represents shared resource. If one observes an MRF system, its 
machine-job matrix will have exactly one ‘1’ in each row, and possibly multiple ‘1’ in columns. Machine-job 
incidence matrix can be defined separately for each part type in an FMS.  
 
3 Recursive system equation from MJI matrix 

 
3. 1  Introduction to modeling of FMRF systems 

 
The system model should provide the insight into states of system jobs and resources. In other words, given the 
recursive system model and its initial state, the user should, in each discrete event iteration number k, be able to 
know which jobs are inactive, completed, which resource are available and which are not. 

 
The basic property of FMRF systems is that these systems include jobs that can be performed by more than one 
resource from the resource pool. The main idea when developing its recursive model is the following: if there is 
a well defined job routing strategy, in each step k, it is uniquely decided which resource will be assigned to each 
job, hence, in each step k system can be seen as an MRF system. Since the resource assigned to a certain job 
changes during the work of the system, for each step k the FMRF systems will be represented with structurally 
disti ct MRF models.  n 
This method will be explained by the example that follows. Let us consider a system with the following MJI 
matrix: 
 

1645

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



  
1R  2R  3R  4R  

 1
1J  1 1 0 0 

� = 1
2J  0  0 0 1 

 1
3J  0 1 1 0 

 
System embraces three jobs: 1J , 2J , 3J  and four resources: 1R , 2R , 3R and 4R .  Job 1J can be executed by 

resources 1R  and 2R . Job 2J  is performed by resource 4R  and job 3J  by resources 2R  or 3R . Let us, for 

instance, define a control strategy such that jobs 1J  and 3J  are performed alternately by assigned resources, i.e. 

resource for job 1J is assigned in the following order: ( 1R , 2R , 1R , 2R …) and for job 3J : ( 3R , 2R , 3R , 2R …). 

Since the first resources to perform considered jobs are 1R  and 3R , the MJI matrix of MRF substitute model, 
�s, in the initial state is: 

  
1R  2R  3R  4R  

 1
1J  1 0 0 0 

�s = 1
2J  0  0 0 1 

 1
3J  0 0 1 0 

 
When one of the jobs 1J  and 3J  is started, the resource assigned to this job alternates, thus, the �s matrix 
changes to: 

 
a) job 1J starts – next resource 

assigned to it is 2R  

b) job 3J starts – next resource 

assigned to it is 2R  
  

1R  2R  3R  4R    
1R  2R  3R  4R  

 1
1J  0 1 0 0  1

1J  1 0 0 0 

�s = 1
2J  0  0 0 1 �s = 1

2J  0  0 0 0 

 1
3J  0 0 1 0  1

3J  0 1 0 0 

 
c) both jobs 1J and 3J start – next 

resource assigned to them is 2R  
  

1R  2R  3R  4R  
 1

1J  0 1 0 0 

�s = 1
2J  0  0 0 1 

 1
3J  0 1 0 0 

 
As we can see from the example, matrices that describe the system are MRF system matrices since they contain 
no multiple ‘1’ in rows.  
  
Given the basic idea behind the development of the FMRF system model, the general recursive procedure is 
given as: 
 
 
 
 
 
 
 
 
 

Input: - FMRF system’s MJI matrix � 
          - Job routing strategy 
In each discrete event iteration step k do: 
          - Determine �s – MJI matrix of MRF system substitution, from the system state  
             in step (k-1) and the given routing strategy 
          - Calculate the system state in step k based on MRF model (�s ) 
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3. 2   Basic recursive model of MRF system 
 

The basic recursive model is developed for MRF system with the following properties: each resource can hold 
maximally one part at a time and there is one sample of each resource in the resource pool. Hence, each job or 
resource, seen as a place in Petri-net formalism, can  contain maximally one token. Further, a system is 
autonomous, thus, a part can enter the system each time the resource assigned to the input operation is available. 
In ot er words, input buffers always contain parts waiting to be processed. h

 
First, we define the following notation for the rest of the chapter: x(k) denotes the value of vector x in discrete 
step k, while xi(k) denotes the value of i-th element of vector x in discrete step k. The system MJI matrix is 
denoted as �s.  
 
Definition 3.1. (completed jobs vector) 

The completed jobs vector, v, is a column vector with dimension equal to the number of jobs in the system. 
vi =1 if i-th job is completed, otherwise vi = 0. 
 
Definition 3.2. (idle resource vector) 

The idle resource vector, r, is a column vector with dimension equal to the number of resources in the 
ystem. ri =1 if i-th resource is available, otherwise ri = 0. s

 
The state of the system is completely described by the values of completed jobs and idle resources vector. The 
relation between vector v and vector r is: 
 

T
s� �r ^ v       (1) 

 
Besides these two vectors, we define an auxiliary vector, rv, with dimension equal to the number of jobs, whose 
i-th element, rvi, is equal to ‘1’ if  resource assigned to job i is available. Vector rv is determined as follows: 

 
T

v s s s� � � �r r =^ ^ ^ v            (2) 
 

The operations on matrices are defined in and/or algebra, denoted �  and 6 , where standard multiplication is 
replaced by logical and and standard addition by logical or. Given a natural number a, its negation a  is such 
that = 0a  if a > 0, otherwise = 1a . 

  
In general, completed jobs vector v is determined as follows: 

 
( ) ( 1) ( )k k - k� �v v d         (3) 

 
Given a certain job i, di(k) equals the difference between the number of parts the job i starts processing ( d ( ) 

and the number of parts released by the job i in discrete event iteration step k ( d ( ): 

)i k�

)i k�

d ( ) d ( ) d ( )i i ik k� �� � k      (4) 
 
The job i can start processing a part in step k if the previous job in line, (i-1)-th job, is completed and if the 
assigned resource is available: 
 

1d ( ) v ( 1) r ( 1)i i ik k - k -�
�� �           (5) 

 
The job i can release a part it holds in step k, if it is completed and if the resource assigned to the next job in line, 
(i+1)-th job, is available: 

1d ( ) v ( 1) r ( 1)i i i+k k - k -� � �     (6) 
 
Definition 3.3. (vector shift) 

Let a be a vector in , . VectormI m8Ia m8Ib , which is a result of upwards (m = 1) or downwards (m = 
-1) vector shift operation, denoted , is calculated as: 

m
a� _b

1 if ( 1 and ) or ( 1 and 1)
=

, otherwisej
j+m

, m j n m j� � � �$
%
&

b
a

�
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Using vector shift operation, the overall change in value of completed jobs vector v can then be written as: 
 

11
( ) ( ) ( ) ( ( 1)) ( 1) ( 1) ( 1))v vk k k k - k - k - (k -� �

�
� � � _ � � �_  d d d v r v r    (7) 

Recursive mathematical model is obtained by combining equations (1-7) and it can be written in the following 
form: 

 
v(k) = v(k - 1) + ) -       (8) v1

( ( 1)) ( 1)k -  k -
�
_ �v r v1

( 1) ( 1)k - k - �_v r

  r(k) = T
s ( )k�� v  

  rv(k) = �s #r(k) 
 

where “.” denotes elementwise product of two vectors.  
 

3. 3  Recursive model of k- limited MRF systems 
 

In general, MRF systems include resources that can hold more than one part simultaneously. These systems are 
called k-limited systems, where k denotes the maximum number of parts a single resource can hold at a time. The 
previously considered systems were 1- limited. 

 
For k-limited systems, elements of vectors v and r can obtain values from zero to the maximum number of parts 
that the corresponding resource can hold - k. That is, if k > 1, completed jobs and idle resources vectors comprise 
in ger values unlike binary values for     k = 1.  te

 
If the resource i does not perform any job, the value of ri corresponds to the maximum number of parts that 
resource i can hold. Each time a resource i starts processing a part, the value of ri is decremented until it reaches 
zero, i.e. for ri = 0 the resource is not available. We can see that the same reasoning was made for 1- limited 
systems. We introduce a new vector, rcap, with dimension equal to the number of resources, with (rcap)i equal to 
the maximal number of parts resource i can hold.  

 
Further, although vectors v and r can obtain integer values for k-limited systems, vectors d+(k) and d-(k) should 
nevertheless be binary vectors. One can obtain a binary (0, 1) value that corresponds to an integer value (0, 1, 
2,…) by doing a double negation on integer number. Thus, the model that describes k-limited systems is 
structurally the same as model (8), with vectors d+(k) and d-(k) double negated. The model can be written as: 
 

v(k) = v(k - 1) + v1
( ( 1)) ( 1k - k - 
�
_ �v r ) ) - v1

( 1) ( 1)k - k - �_v r       (9) 

  r(k) = rcap -  T
s ( )k�� v

  rv(k) = �s # r(k) 
 

3. 4  Recursive model of MRF system with more than one flowline 
 
The models introduced so far are valid for systems with a single flowline. If the system embraces more than one 
flowline, the previous models should be modified. First, to construct an MJI matrix of such system, we separate 
different flowlines with zero rows. This is convenient since in (F)MRF systems, at least one resource is assigned 
to each job, hence, zero rows cannot appear in any other place in matrix MJI. MJI matrix and vectors v and r are 
then constructed as follows: 

s1 1 1

s2 2 2

s

sn n n

! � ! � !
� �

�
� � �

� �
�

� � �
� �

�
� � �

� �
�

� � �� � �� �
�

� � �
� �

�
� � �

� �
�

� � �
� �

�
� � �

� �
�

� � � � �   �

� v r
0 0 0

� v r
� 0 v r0 0

0 0 0
� v r


 
 


�

 

 
If vectors v and r would be included in the previously given models, the results would be inaccurate due to 
inserted zeros. To neutralize the influence of these zeros in vectors v and r we introduce an auxiliary vector, uaux: 
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uaux = �s 
 Im,1        (10) 
 
where Im,1 is a column vector with dimension m that is filled with '1's. According to equation (10), auxiliary 
vector uaux element is zero if it corresponds to zero row in MJI, otherwise it is one. If we denote with „�“ 
elementwise logical or operation, the recursive model for systems with more than one flowline can be written as: 
 

uaux = �s 
 Im,1 

v(k) = v(k - 1) + ( (v(k - 1) � 
1�
_ auxu ) )· rv(k - 1) - v(k - 1)· (rv(k - 1) �

1
_ auxu )  

  r(k) = T
s ( )k�� v           (11) 

rv(k) = �s # r(k) 
 
From equation (10) an attentive reader can conclude that auxiliary vector enables correct implementation of parts 
input and output jobs.  
 
3. 5  Conflict resolution in recursive model of MRF system 
 
In case two or more jobs, assigned to a single resource, can be started in the same step k, the system designer 
should define which of them should be performed. This kind of situation is called a conflict. From the 
mathematical point of view, conflict develops when more than one element of vector v+ that corresponds to a 
single resource is equal to ‘1’. Conflict is solved, depending on the resource dispatching strategy, in such a way 
that jobs of lower priority are forbidden i.e. the corresponding elements of d+(k) are set to zero. The 

athematical approach to conflict resolution is analogous to the one described in [11]. m
 
L
 

et us define the following: 

Definition 3.4. (conflict jobs vector). 
The conflict jobs vector, vd, comprises information on the jobs performed by shared resources. vdi = 1 if job i is 

one by a shared resource, otherwise vdi = 0. The vector dimension equals the total number of jobs in the system. d
  

If a shared resource vector is denoted as rs (rsi = 1 if i-th resource is shared, otherwise         rsi = 0), vector vd 
can be determined as follows: 
 

d s� �v r^       (12) 
 

Definition 3.5. (dispatching matrix) 
The dispatching matrix, Fd, is determined from the conflict jobs vector vd as follows: 

 
i

1( , )

1 if v 1 and u
f

0 otherwise

d i d k
kd i j

, j

,
�

$ � �U� %
U&

�    (13) 

 
Definition 3.6. (dispatching vector) 

The dispatching vector ud is a column vector with dimension equal to the number of conflict jobs in the 
system. If job i  is of the highest priority among conflict jobs, udi = 1, otherwise   udi = 0. The priorities of jobs 

epend on the applied conflict resolution strategy. d
  
As we said earlier, in case of the conflict, the jobs of lower priority should be forbidden, hence, corresponding 
element of vector d+(k) should be set to zero. Recursive matrix model for the system with conflict resolution is: 

v(k) = v(k - 1) + ( v(k - 1))· rv(k - 1)
1�
_ d d� �F u  - v(k - 1)· rv(k - 1) 

1
_

r(k) = T
s ( )k�v^         (14) 

rv(k) = �s # r(k) 
 

The model in form of (14) is suited only for 1-limited systems. To define a conflict resolution for k-limited 
systems, element d d�F u  needs to be included in the expression for d+(k). Conflict resolution model for k-
limited systems is then given as: 

 v(k) = v(k - 1) + v1
( ( 1)) ( 1) d dk - k - 
�
_ � � �v r F u  - v1

( 1) ( 1)k - k - �_v r         (15) 
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      r(k) = rcap -  T
s ( )k�� v

       rv(k) = �s # r(k) 
 

Since vector rcap is filled with ones for 1-limited systems, model (15) is suitable both for    1-limited and k-
limited systems with k>1. If one wants to apply the same procedure for k-limited systems with more than one 
flowline, auxiliary vector uaux should be included in model (15) as well: 
 

uaux = �s 
 Im,1 

v(k) = v(k - 1) + v1
( ( 1) ) ( 1)aux d dk - k - 
�
_ ` � �v u r F u�  - v1

( 1) ( ( 1) auxk - k - �_ `v r u )

2

 

r(k) = rcap -                                                                                         (16) T
s ( )k�� v

 rv(k) = �s # r(k) 
 

The model (16), with properly determined associated vectors ud, rcap, uaux, comprises all previously considered 
system models: (8), (9), (11) and (15)) and is therefore the most suitable for implementation.  

  
3. 6 Recursive model of FMRF system 

 
As we stated earlier, the idea behind determination of the model of FMRF system is that, having a dispatching 
strategy, FMRF system can be represented as corresponding MRF system in each discrete event iteration step k. 

he MJI matrix �s, which is an MRF substitute of the FMRF system in step k, depends on the applied strategy.  T
  
Definition 3.7. (MRF substitute MJI matrix) 

MRF substitute MJI matrix, �s � �m,n, is a matrix with dimensions equal to dimensions of FRMF system MJI 
matrix, �. �s  is obtained as follows: 

. /

s
1

1

0 if ( ) 0

( ) 1 if ( ) 1 and ( ) 1

u 0 1 if ( ) 1 and ( )

n

k
n

l
k

, i, j

i, j , i, j i,k

, , i, j i,k

�

�

$
U ^ �U
U

^ � ^ � ^ �%
U
U

8 ^ � ^ <U
&

�

�

   (17) 

  
As we can see, the matrix �s is a structural copy of matrix �, where each ‘1’ in rows that contain more than one 
‘1’ is substituted with corresponding control variable ul. If we return to the example from the beginning, matrix 
�s is determined as a function of control variables as: 

 
  

1R  2R  3R  4R  
 1

1J  u1 u2 0 0 

� = 1
2J  0  0 0 1 

 1
3J  0 u3 u4 0 

 
Control variables have binary values depending on whether or not the corresponding resource performs the job.  
The values of control variables should be such that in every step k exactly one variable in the row is equal to ‘1’. 
 
4    System simulator design 

 
Based on the formulas presented in this paper the application called “MJIWorkshop”, which simulates the FMRF 
systems is developed. Simulator’s main window is shown in Figure 1. System is initially given by its MJI matrix 
and initial state and for each step k a new state value is determined. The state of the system is visually 
represented in form of a token matrix shown in Figure 2. Token matrix is structurally the same as MJI matrix. 
Matrix element (i,j) contains a token in step k if job i is executed by resource j in step k. The token matrix is, as 
well as Petri nets, convenient for visualizing the discrete event systems.  
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Figure 1. MJIWorkshop input window 
 

Developed system simulator is standard Multiple-document Microsoft Foundation Class (MFC) application 
created with Microsoft Visual Studio 6.0 [12] and is written in C++. A reason to use MFC instead of .NET is an 
intention to get a program that is able to run without a problem even on older PCs and further, to make 
application portable, i.e. able to run from USB stick without need to install it. 

 

 
 

Figure 2. Visualizing system state in MJIWorkshop including  
conflict resolution window 

 
Internal structure of program is more or less similar to other multiple document programs created with Visual 
Studio wizard. It is standard document-view architecture software, which is mainly based on MFC classes 
CDocument and CView. Main class, which holds all necessary data, is CMJIWorkshopDoc. This class, using its 
methods, performs editing and simulation by creating and running two other objects: CEditMJIDlg and 
CSimulateDlg. Class CMJIWorkshopView takes care of visualization. Its object, using associated document, 
takes all necessary data to display the current system state on the screen, as shown in Figure 4. Unified Modeling 

anguage (UML) class diagram, which shows main relationships between classes is given in Figure 3. L
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A template matrix C++ class [13] is used to implement all matrix calculation in recursive model. In matrix class 
template just basic operations and data storage are implemented, hence, some extra functionality had to be added 

 fit our needs.  to
  
To display the results, program uses an external utility, GnuPlot [14], which prepares the results data file and 
then invokes it to display the results in a desired manner. Program can display all jobs, all resources, or the user 
can choose what to display from the list of available signals. A sample of signal visualization window together 
with the list of available signals is shown in Figure 4. Further, to display the system in form of Petri Net, we use 
the PNML Viewer [15], which displays a network described in Petri Net Markup Language (PNML) - a form of 
XML for Petri Nets.  
 

CObject

CWnd

CCmdTarget

CFrameWnd

CMDIChildWnd CMDIFrameWnd

CDialog

CDocTemplate

CMultiDocTemplate

CDocument

CView

CMJIWorkshopDoc

+m_mji_matrix: Matrix
+m_mji_sign_matrix: Matrix

CMJIWorkshopView

+OnDraw()

CEditMJIDlg

+pDoc: CMJIWorkshopDoc

CSimulatorDlg

+pDoc: CMJIWorkshopDoc

+SingleStep()

Matrix

 
Figure 3. Simplified UML class diagram 
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Figure 4. Signal visualization with GnuPlot  
 

5    Conclusion and future work 
 
Developed simulator is based on the model that consists of a single matrix: the machine-job incidence matrix. 
The MJI matrix comprises all information needed to fully model an FMRF system. Recursive models are given 
separately for basic types of systems, while the developed simulator encloses all of these models and implements 
the overall model of k-limited FMRF systems with more than one flowline, together with the job and conflict 
resolution. The current state of the system is obtained by performing various simple matrix operations, thus, the 
recursive model procedure is easy to implement and non-time-consuming. Matrix dimensions depend on the size 
and complexity of the analyzed system. The simulator is convenient for system analysis in design stage since it 
allows the user to apply various job and resource dispatching strategies on-line while simulating the system. In 
the future, operating times are to be included in the application together with the support for system performance 
analysis. Also, the connection with other simulating tools, such as Matlab and Petri.NET[16] is to be developed.  
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