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Abstract. Targeting large scale dynamical systems, the incorporation of manufacturing tolerances

into Electronic Design Automation methods requires an extension of classical Model Order Reduction

methods, such that the dependency of system matrices on certain geometry or material parameters is

preserved within the reduced order model. Parametric Model Order Reduction methods are part of

the current main research of many authors, but still have not reached a production ready stage. A

major issue that will be addressed in this paper is the absence of an analytical relationship between

parameter values and resulting system matrices in many real world applications. A second challenge is

the preservation of passivity. Two examples from nanoscale IC design and microscale MEMS design

will be given to demonstrate the effectivity of our approach.

1 Introduction
In modeling of micro mechanical electrical systems (MEMS), we use the finite element method (FEM) to obtain

a spatial semi–discretization of the corresponding partial differential equations in form of linear time invariant

second order descriptor systems

Mẍ(t)+ Dẋ(t)+ Kx(t) = Binu(t)
y(t) = Bout

1 x(t)+ Bout
2 ẋ(t)+ Fu(t)

}
(1)

with system matrices M,D,K ∈ RN×N ;Bin ∈ RN×p;Bout
1 ,Bout

2 ∈ Rq×N ;F ∈ Rq×p.

Alternatively, first order descriptor systems, that is M ≡ 0 and Bout
2 ≡ 0, can be obtained from the discretization

of the heat equation, the discretization of Maxwell’s equations for electro magnetic problems via partial element

equivalent circuit method (PEEC, see [11]) and the formulation the circuit equations of RCL–networks via modi-

fied nodal analysis (MNA, see [12] and references therein) .

In models of micro- or nanoscale devices, the state space dimension N of (1) reaches magnitudes of 105 . . .107.

Without Model Order Reduction (MOR), time domain simulations would be impossible, especially when the

coupling of several large scale subsystems is required for system level simulation.

During the last decades, Krylov subspace projection based MOR methods proved as a practical way to reduce the

state space dimension of large scale dynamical systems [1]. In a nutshell, these methods construct an orthonormal

projection matrix Vn ∈ RN×n to generate a reduced order system with state space dimension n � N, where the

reduced system matrices are given as

Mn:= VT
n MVn, Dn := VT

n DVn, Kn := VT
n KVn,

Bin
n := VT

n Bin, Bout
1,n:= Bout

1 Vn, Bout
2,n := Bout

2 Vn.
(2)

Note that the number of inputs p and outputs q is unchanged, allowing for a seamless replacement of the original

system with the reduced system.

In our case, a rational Block–Arnoldi method is used in order to preserve the passivity of the system [2, 7].

Furthermore, the resulting projection matrix Vn yields a reduced system whose transfer function matches a certain

amount of moments of the transfer function of the original system. This process is also known as implicit moment

matching for multiple expansion points, where the so-called moments are defined as the Taylor coefficients of the

transfer function in respect to the complex frequency variable and certain expansion points [1].

Confronted with a growing demand for tools incorporating manufacturing tolerances during simulation and de-

sign, Fraunhofer started a joint research project named CAROD (Computer–Aided Robust Design) [10]. One of

its subgoals is the integration of Parametric Model Order Reduction (PMOR) methods into Electronic Design Au-

tomation (EDA) software. This should give a significant speedup for the computation of parameter sweeps needed

for optimization tasks and sensitivity calculations.

2 Parametric Model Order Reduction
Our starting point is the following parameter dependent version of (1):

M(μ)ẍ(t)+ D(μ)ẋ(t)+ K(μ)x(t) = Bin(μ)u(t)
y(t) = Bout

1 (μ)x(t)+ Bout
2 (μ)ẋ(t)+ F(μ)u(t)

}
(3)
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Each of the system matrices is given as a polynomial in the parameter vector μ := (μ1 . . .μk)
T ∈ Rk with matrix

valued coefficients:

M(μ) := ∑
i1,...,ik

μ i1
1 · · · · ·μ ik

k Mi1,...,ik , D(μ) := ∑
i1,...,ik

μ i1
1 · · · · ·μ ik

k Di1,...,ik , etc. (4)

As the formulation (4) of the parameter dependent system matrices can be seen as a linear combination of constant

matrices, we obtain a reduced system similar to (3) by applying the projection step (2):

Mn(μ) := VT
n

(
∑

i1,...,ik
μ i1

1 · · · · ·μ ik
k Mi1,...,ik

)
Vn (5)

= ∑
i1,...,ik

μ i1
1 · · · · ·μ ik

k VT
n Mi1,...,ik Vn (6)

=: ∑
i1,...,ik

μ i1
1 · · · · ·μ ik

k Mi1,...,ik ;n (7)

The remaining reduced system matrices Dn(μ),Kn(μ), . . . are constructed analogously.

For the construction of a suitable projection matrix Vn, different authors have proposed an extension of the classical

moment matching approach outlined in the previous section, where not only frequency moments are matched, but

moments in respect to the parameters also [6, 4, 13, 5, 9].

But in order to make these methods applicable for our applications, we had to implement the snapshot generation

step outlined in the following section.

3 Snapshot Generation
In applications where model generation is done with third party software given as a black box, the analytic relation-

ship between parameters and system matrices necessary for a problem formulation like (3) is not known explicitly.

But at least these tools allow for a generation of a series of snapshots of the full order model at fixed parameter

values. In the context of the CAROD project, we investigated the suitability of matrix–valued finite differences for

the generation of parameterized system matrices in the desired polynomial form (4) [8].

For the sake of clarity, we restrict ourselves to single-parameter systems in this paper. Given a parameter dependent

matrix A(μ), a nominal parameter value μ0 ∈ R and a step size h > 0, the corresponding first order central
difference quotient is defined as

δ 1
h A(μ0) :=

A(μ0 + h/2)−A(μ0−h/2)

h
(8)

With three snapshots, i.e. given values of A(μ) at μ0, μ0 − h/2 and μ0 + h/2, we are now able to construct an

approximation Δ+1 A(μ) to a truncated Taylor series of A(μ):

Δ1 A(μ) := A(μ0)+ (μ − μ0) δ 1
h A(μ0) (9)

This approach can be extended by composition of the finite difference operator δ 1
h , yielding the following second

order approximation of A(μ):

δ 2
h A(μ0) := δ 1

h

(
δ 1

h A(μ0)
)

=
A(μ0 + h)−2A(μ0)+ A(μ0 −h)

h2
(10)

Δ2 A(μ) := A(μ0)+ (μ − μ0) δ 1
h A(μ0)+

(μ − μ0)
2

2
δ 2

h A(μ0) (11)

By applying these finite difference operators to snapshots of the system matrices of a parameter dependent model,

we are now able to generate a parameter dependent descriptor system (3) that can be reduced using the projection

based PMOR approach outlined in the previous section.

4 Passivity Preservation
When several stable subsystems are coupled, the total system is not stable in general. But if the subsystems are

passive, stability of the total system is guaranteed. This is why the preservation of passivity is important for us.

In our applications, the system matrices M,D,K are symmetric positive semidefinite, F ≡ 0 and either Bin =
(Bout

1 )T with Bout
2 ≡ 0 or Bin = (Bout

2 )T with Bout
1 ≡ 0. It can be shown, that these properties are sufficient for

passivity of the non–parametric system (1), see e.g. [12]. Thus, the reduced system matrices obtained from (2) are

symmetric positive semidefinite by construction and passivity is preserved.
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Consequently, if the parameter dependent system (3) is passive for a certain parameter range [μmin,μmax] ⊂ R, the

reduced parameter dependent system obtained via projection (5) is passive as well. However, for our snapshot

based approach this statement does not hold in general, even if the snapshots themselves are passive.

But there is hope if the parameter dependence is steady and the disturbance of the parameter dependent system

matrices is small. It is well known that positive semidefiniteness of an arbitary real symmetric matrix A is equiv-

alent to its eigenvalues being non-negative. Provided that the underlying eigenvalue problem is well conditioned,

positive semidefiniteness and therefore passivity will be preserved.

5 Numerical Examples
Our first example is a micro mechanical acceleration sensor modeled with ANSYS®, where the thickness θ of the

suspension beam of the seismic mass has been varied between 2.6 . . .3.4μm. Three snapshots where created for

the generation of a parameterized model via first order central differences with nominal value θ0 = 3μm and step

size h = 0.01μm. The state space dimension of the full oder model has been reduced from 27225 to 24.

Figure 1 is a comparison of the full vs. the reduced order model at different parameter values where 1(a) shows the

frequency response of the applied force versus the resulting displacement of the sensor’s seismic mass and 1(b) is

a plot of the first three dominant eigenfrequencies. For the considered frequency range of 0 . . .106Hz, the relative

error of the reduced transfer function stays below 10−2 for θ ∈ [2.8,3.1] and below 10−1 for θ ∈ [2.6,3.4].
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(b) Dominant eigenfrequencies of acceleration sensor

Figure 1: Comparison of original and reduced model of acceleration sensor

As can be seen, the transfer characteristics and the shift of dominant eigenfrequencies are well approximated over

a wide parameter range and passivity is preserved for θ ∈ [2.6,3.4].

Our second example is a model for the electromagnetic interaction of three parallel nano–scale transmission lines.

The lines have a length of 8mm and the width ω of line 1 has been selected as a parameter to be varied between

0.12 . . .0.32μm. Five equivalent RCL–networks have generated using the PEEC method and the characteristic line

parameters calculated with Simlab PCBMod® for a 2D profile of the transmission lines. The resulting parametric

first order descriptor system was created with second order central differences. It has 6 inputs, 6 outputs and its

state space dimension has then been reduced from 1203 to 90.

For different values of ω , figure 2(a) shows a comparison of the frequency response for input/output pair (1,2)

related to the damping on line 1 and the pair (1,3) related to the crosstalk between line 1 and 2. In figure 2(a) we

computed the maximum frequency for each ω = 0.12,0.13, . . . ,0.32μm where the relative error of the frequency

response is below 1e-2 for all input/output pairs.

The plots show that in the neighborhood of the nominal value ω0 = 0.22μm, there is a good approximation of the

parameter dependency up to 10GHz. Passivity is preserved for the whole parameter range.

6 Conclusions
We have shown that it is possible to obtain accurate and passive parameter dependent reduced order models from

snapshots of full order systems at fixed parameter values with the help of finite differences.

Passivity has been checked a–posteriori in our examples. But an algorithm that automatically adjusts the set of

expansion points and the number of Arnoldi–iterations needed for passivity preservation and a certain accuracy in

a given parameter range would make parametric model order reduction more user friendly.

2686

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



106 107 108 109 1010
−15

−10

−5

0
|u

k/u
1| i

n 
dB

f in Hz

original u
2
/u

1

reduced u
2
/u

1

original u
3
/u

1

reduced u
3
/u

1

(a) Frequency response for damping on line 1 and crosstalk between

line 1 and 2 for ω = 0.13,0.16,0.19,0.22,0.25,0.28,0.31μm

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
100

102

104

106

108

1010

1012

ω in μm

f m
ax

 in
 H

z

(b) Maximum frequency for which relative error of frequency re-

sponse for all input/output pairs is below 1e-2

Figure 2: Comparison of original and reduced model of transmission line model

For the sake of clarity we restricted ourselves to one–parameter systems in this paper. While the finite difference

approach for multi–parameter systems is a straight forward extension to multivariate Taylor series, second and

higher order finite differences will introduce cross dependencies that make model generation very resource intense.

For example, five parameters would lead to 47 snapshots [8], resulting in a data set of 1.5 Gigabytes for the

acceleration sensor. Regarding future research, a possible tool to reduce the number of snapshots could be an

approach based on Sparse Grids [3].
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