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Abstract. The multiphysics model with distributed parameters of a gas-damped micromirror and 

its solution by the finite element method (FEM) is presented. The model is a useful tool for 

micromirror design and optimization (i.e., the optimization of the shape and dimensions of the 

micromirror, and its control circuits). The MEMS-based micromirrors have been already 

fabricated and can be used in the optical crossconnects in all-optical high-throughput 

interconnection networks [1–5]. Many researchers and companies labour for reducing switching 

time of the switch because for useful application in all-optical networks it is necessary to achieve 

short switching time as much as possible, i.e. the micromirror have to adopt new steady-state 

position in minimal time. Our approach is based on the presence of suitable gas, which can cause 

aperiodic transient response and thus improve the properties of the switch. In this point, it is very 

interesting and challenging to model and simulate the switching process in the switch. 

1 Introduction      
The multiphysics model of the crossconnect of the switch includes the micromirror with torsion rods, bottom 

electrodes and the surrounding gas (see Figure 1a). The incidence of the gas can be numerically modeled (and 

approximated) by the squeeze film damping effect [6]. Nevertheless, the Navier-Stokes equations in the 

conservative form should to be used for more precisely results. The voltage applied between micromirror and 

bottom electrodes determines the position of the micromirror. The step response of the micromirror on the 

applied voltage is highly oscillating due to absence of effective damping. Therefore, there is need for the design 

of an effective control system of the switch, or the effective damping, or both. The motion control of the 

micromirror is a nontrivial problem because of feedback of the position of the micromirror. There are many 

possibilities for realization of the feedback usually based on a capacitance sensing circuits. However, for 

reducing switching time, it is also possible to use an open-loop control when the effective damping is included. 

Figure 1. The model of the crossconnect of the switch

2 The model of the crossconnect 
The multiphysics model is represented as a system of partial differential equations. The model consists of three 

parts (see Figure 1b), an electrostatics part described by the Poisson equation, a structural mechanics part 

described by the Newton equations, and a gas dynamics part decscribed by the Navier-Stokes equations. 

Simultaneous coupling between these three physical areas can model all essential processes in the crossconnect. 

The interaction is based on the coupled boundary conditions (e.g. through interactively acting forces on the 

boundaries, geometry conditions, etc.), which are computed in each time step. The model (represented through 

coupled partial differential equations) is discretized in the spatial and temporal domain. The spatial dicretization 

by standard Galerkin finite element method (standard GFEM) is used for electrostatics and solid mechanics; and 

then the Newmark method for time stepping is used only for solid mechanics. The temporal discretization by 

characteristic-Galerkin procedure and after that the standard GFEM for spatial discretization is used for gas 

dynamics because of convection-dominated problem.  
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2.1 Electrostatics 
Electrostatic field within any media characterized by the permitivity ε is given by 

– ∇T ε ∇ϕ = qe , (1) 

where ϕ is electric potential, qe is charge density and ∇ is the nabla operator defined as ∇ = (∂/∂x,   ∂/∂y,  ∂/∂z)
T
. 

After applying the weighted residual method to (1), performing a partial integration, Neumann conditions setting 

to zero, using approximation with standard nodal finite elements, using standard Galerkin method for choosing 

test functions and transformation into the discrete formulation we can rewrite (1) into the matrix form: 

  e
~ fK =ϕϕϕϕϕ , (2) 

where  ( ) Ω∇∇= �
Ω

d
T

ϕϕϕ ε NNK ,  Ω= �
Ω

d ee qϕNf . (3) 

For simplicity, the integration in above equation is written for whole domain Ω, but in real implementation of 

FEM the integration is divided into finite elements because of local support of each basis function. The integral 

over local domain Ωe
 is evaluated by using the numerical Gauss quadrature rule. The tilde (~) is used for the 

identification of the nodal vector variable, and N for the basis (or shape) functions. 

2.2 Solid mechanics  
The Newton equations describing the dynamical behavior of mechanical system (for linear isotropic material) 

can be rewritten in the form: 

  
2

2

tM
T

∂
∂=+ ufuE�� ρ  , (4) 

where u is the displacement vector, ρM is the mass density of the material, ββββ is the differential operator,  E is the 

elastic modulus matrix and f are external forces. In the above, 
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with     

where E is the Young's modulus of elasticity and ν is the Poisson constant. Similarly as in the electrostatics, the 

equation (4) can be rewritten in the matrix form: 

  Muu
~~ fuKuM =+�� , (5) 

where  ,u
T
uMu Ω= �

Ω

dNNM ρ     ,T
u �

Ω

Ω= d BEBK    Γ+Ω= ��
ΓΩ

d d B
T
uV

T
uM fNfNf  (6) 

with fV  being volume forces, fB being surface forces on the boundary Γ; and matrix B defined by B = ββββNu. 

The second term of fM in equation (9) is evaluated only for elements on the boundary. 

The Rayleigh damping model, in which the damping matrix Cu is computed via a linear combination of the mass 

matrix Mu and stiffness matrix Ku (i.e. Cu = αMMu + αKKu), can include the damping effects in the solid 

mechanics part of the model. Thus, the equation (5) can be rewritten in the form: 

  Muuu
~~~ fuKuCuM =++ ��� , (7) 

and solved by the Newmark method (see e.g. [7]) for specified time-step value Δt. 

2.3 Gas dynamics 
The Navier-Stokes equations describe the motion of viscous fluid. All the essential features can be captured by 

set of three equations (mass, momentum and energy conservation) complemented by the universal gas law:

  ( )
t
p

ct
T

∂
∂=−∇=

∂
∂

2

1vρρ , (8) 

                      ( ) ( ) iG
T

iziyix
T

i
Ti g

i
pU

t
U ρτττ −

∂
∂−∇+−∇=

∂
∂ v     for  i = x, y, z (9) 

  
( ) ( )( )TkpE

t
E

G
T ∇+++−∇=

∂
∂ 'vvρρ

, (10) 
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TR

p

s
G =ρ , (11) 

where ρG is the density of the gas, c is the speed of sound, v is the gas velocity, Ui are components of U, U is the 

flow flux given by U = ρGv , p is the gas pressure, ρGgi represents body forces and other source terms, τij are the 

deviatoric stress components, k is the thermal conductivity, E is the specific energy, T is the absolute temperature 

and Rs is the specific gas constant.  

In the above,   
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3

2
and  (12) 

where δij is the Kronecker's delta (unity if i = j, 0 otherwise) and μ  is the viscosity of the gas. 

The following equations are useful to relate energy, temperature, velocity and speed of sound: 

  ( ) .Tcc,TcE p
T

v 1
2

1 2 −=+= γvv   (13) 

We have used the characteristic-based split algorithm introduced by Zienkiewicz et al. [8–10] to discretize above 

equations in temporal domain.  The four matrix equations after temporal and spatial discretization of equations 

(8–10) can be written in four steps as follow:  

Step 1: 

( ) ( )[ ]n
sivi,ivvi

~t~~t~ fUKfvKUCMU +Δ−−+Δ−=Δ −∗
τ

1 , (14) 

for i = x, y, z,  where 
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 (15) 

  ( ) ( ) v
T

v
T

v
T

v
T

v
T

v
~~ NvNNvNNvvNvN� vv ∇+∇=∇+∇=∇= , (16) 
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Step 2: 

( ) [ ]p
n

p
~t~~tt~ fpHUGUGHMp −Δ−Δ+ΔΔ+=Δ ∗−

11

1

21
2 θθθθ , (19) 

where 

  
( )

( ) ( )( )[ ] .dppt~~,d

,d,d
c

nnTT
ppp

T
p

T
pp

n
T

pp

ΓΔ+∇Δ−Δ+=Ω∇∇=

Ω∇=Ω�
�


�
�
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∗

ΓΩ
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21

2

1

θθ UUnNfNNH

NNGNNM v
 (20) 

Step 3: 

( ) ��
�

��
� Δ+Δ+Δ−Δ=Δ −∗ n

i
n

ivii
~t~~t~~ pPppRMUU

2
2

1 θ , (21) 

for i = x, y, z,  where 

  ( )( ) .d
i

d
i

,d
i p

T
p

T
v

T
ip

T
vi ���

ΩΩΩ

Ω
∂
∂=Ω

∂
∂∇=Ω

∂
∂= N�NvNPNNR . (22) 

Step 4: 

( )[ ] n
vpvEeETpEE

~~t~~~~t~ 1 pKZKfuKTKpCZCMZ +Δ−++++Δ−=Δ −
τ , (23) 
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where 

( ) ( )

( )����
����

ΓΩΩΩ

ΩΩΩΩ

Γ∇+=Ω−=Ω−Ω=

Ω∇∇=Ω∇=Ω=Ω=

,dTk,d,d,d

,dk,d,d,d

dTT
EeE

T
EvEp
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T
T

ET
T

EEE
T
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T
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vtnNf��K��K�NC

NNK'NNK�NCNNM v

2

1

2

1

τ
 (24) 

where ( ) ( ) �
=

=∇=∇=
z,y,xk

kkp
T

pE
T

E
~�, &vYB�'vN�vN�    and      (25) 

with  ( ) ( ) ( )100010001 === zyx ,, &&& . (26) 

In the above equations, ττττi = (τix , τiy , τiz)
T
 is the traction corresponding to the deviatoric stress components; the 

superscript "n" indicates values in n-th time-step; Δt is the time-step increment; θ 1 and θ 2 are integration 

parameters; and Z~ contains the nodal values of ρGE. 

It is necessary to mention that the gas flow velocity on the mirror boundary has to be the same as the velocity of 

the mirror. The mirror boundaries are subjected a load from the gas and from the electrostatic field. This load 

represents a sum of perpendicular pressure, viscous forces and electrostatic forces. The simulation of the coupled 

multiphysics model provides the velocity field, pressure distribution, and temperature distribution in the gas; 

electric field distribution; the mirror position; and the deformation and stress state in mechanical structure of the 

crossconnect.  

3 Conclusion 
Presented model and its solution by the finite element method are suitable for practical writing of the own 

simulation software, which is capable to model and simulate the described problem. The first disadvantage of the 

presented model is in the difficulty when it is coding in contrast to the model with concentrated parameters. The 

second disadvantage is a longer computational time for its simulation. Nevertheless, it provides a detailed view 

"into" the crossconnect and more precisely results by comparing the results of model with concentrated 

parameters. Thus it can be used for advanced micromirror design and optimization. Moreover, the model is 

universal in the sense that all electrostatic actuators can be modeled and simulated by this model, regardless of 

the shape of the actuator.  
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