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Abstract. This paper deals with nonlinear systems and use its structure to study the diagnosis capability of
simultaneous faults. The concept of redundant graph is used to study the faults diagnosis of Hessenberg systems
since this concept determines subgraphs involving only known variables of the bipartite graph which can be jointed
despite the faults. From this characteristic, the constraints subsystem involved in the redundant relations and the
isolability conditions can be obtained.

Introduction. The interest to determine models decoupled of unknown input for nonlinear systems has been
increased and one of the reason is that the fault isolation task in a diagnosis system for dynamic nonlinear systems
requires observable subsystems sensitive to some faults and robust to the rest. A general theory for the nonlin-
ear fault detection and isolation, FDI, issues is still missing and in general the solution is based on redundant
information and the consistence between normal and actual process behavior. To overcome the difficulties diverse
analytical tools and particular class of nonlinearities are considered, [4], [3], [1]. The conditions given with this
formulation are difficult to test and satisfy in complex systems and do not help to study the additional assumptions
required to get a solution.

Since to know if there is a solution, only the structure of the system plays an important role, the use of generic
structural models are more appropriate for the analysis than the analytical models. Staroswiecki’s school suggests
the structural analysis [2] to study the fault diagnosis. This framework has two advantages: allows to cope with
complex system, and requires few parameters information.

To study the faults detectability and isolability of complex process, this paper proposes the definition of redundant
graph RG following the framework of Blanke’s school [2]. Its advantages are shown with the issue of two faults
in a upper and lower nonlinear Hessenberg System in which the absence of a solution for the diagnosis is easily
justified and the candidate sensors to improve the isolability are straightforward identified.

FDI Principle. Consider the analytical model of a nonlinear process

ẋ = fm(x,F ,F̄ )+g(x,u,F ,F̄ )
y = h(x,u,F ,F̄ ) (1)

with x ∈ ℜn, u ∈ ℜq, y ∈ ℜm, the faults set F = { f1, ..., f f }, and the non interest faults set F̄ = { f̄1, ..., f̄d}, the
known set K associated to u and known variables y.

Definition 1 Given a vector ki integrated by a subset of known signals Ki ⊂K of system (1), the expression

RR(Ki) = RR(ki, k̇i, k̈i...) = 0 (2)

is called a redundancy relation RR for a set of detectable faults F if for all Ki consistent with the process free of
faults, RR is zero; and if a fault fi εF occurs, RR is inconsistent or different from zero.

Thus, the faults diagnosis depend on the relations between the known variables set K in normal and fault con-
ditions and a residual generator is a particular kind of a redundancy relation RR. The fault isolation issue is
formulated as follows.

Definition 2 Two faults sets F and F̄ are isolable with a known variables set Ki if exist at least a pair of
redundant relations with different inconsistences for the two sets of faults; this means

RRk(Ki) |F �= RR j(Ki) | F̄ , with F ∩ F̄ = ∅ (3)

If there is a inconsistent RRi for each member of F , the faults are concurrently isolable.

A simple way to generate the RRs is to link variables and constraints without numeric values by a bipartite graph
and determining the relation by directed graphs with all the possible combinations of known variables K .
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Structural Analysis.

Definition 3 Consider system (1) characterized by the set of constraints C = {c1, . . . ,cnc} with |C | = nc = 2n +
m, the exogenous variables U = {u1, . . . ,uq}, and the endogenous Y = {y1, . . . ,ym}, both known K = U ∪Y
and the unknown variables set X = {x1, . . . ,x2n}, including the time derivative of each state xi, then (1) can be
described generically by the bipartite graph

G = {C ,Z ,E } (4)

which associates the vertices Z = X ∪K with the vertices of C , by the edges E ⊂ C ×Z defined as

ei, j = (ci,z j) if z j appears in ci (5)

Thus, the graph G can be represented by interconnection of vertices of Z and C by the edges E .

Bipartite graph are as well described by a incidence matrix where the rows are associated to the constraints ci, the
columns to the variables zi and each edge (ci,z j) is indicated by 1. The evaluation of the variables X with the
constraints C in a graph is equivalent to give a orientation to each edges passing by the vertices X . Since, the
key of the FDI is the redundancy between known variables and this is captured in the over-constrained part of the
Dulmage-Mendelssohn decomposition G +, this part is only considered for FDI [2].

Definition 4 Let e = (cz,z) be an edge connecting cz with z, and consider the projection of the edge

• on the constraints set pc(e) = cz written by z→ cz and,

• on the variables set pz(e) = z denoted by cz→ z.

The set of edges M ⊂ E is a matching which assigns members of the set Z with members of C if for all pair
{e1,e2} ⊂M such that e1 �= e2 implies

pc(e1) �= pc(e2); and pz(e1) �= pz(e2) (6)

A matching graph is oriented and the arrow direction means the edge projection on the initial vertex to the final
vertex. A property of the matched edges set is that any member has a common vertex.

After the matching process, the paths which connects the vertices following an orientation are equivalent to opera-
tors obtained by constraints concatenations. Then, the directed graph with initial vertices in K = U ∪Y , without
distinction or exogenous and endogenous variables is a RR. This fact allows to combine the members of K and
to joint them looking for directed short paths to maximize the fault isolability. Thus similarly to the analytical
redundancy relation, the redundant graph is defined here to search short paths between vertices of K in the graph
context.

Definition 5 Let Ki := Usi ∪ yi be a subset of known variables matched with the subset of constraints Ci, initial
vertices of Usi and target vertex yi, then

RG i(Ci;Usi;yi) (7)

is a redundant graph if

• there is consistency between the vertices of Usi and the target yi in the paths obtained concatenating Ci
without faults, and

• a lack of consistency between Usi and yi in the path is produced by faults.

Thus, the members of Usi are considered as independent variables and are correlated with yi by the RG i and faults
generated inconsistent vertices in the matching graph.

FDI Properties of a Hessenberg Form. Consider the differential system defined on domain Ω ∈ℜn, u ∈U

Σ
{

ẋ= f (x,u)+Fi(x)p1 +Fj(x)p2

y=h(x) ∈ℜ2 (8)

where:

1. The system is both strictly linked lower and upper Hessenberg. This means for any indexes (i, j) such that

j > i+1,
∂ fi(x,u)
∂x j+1

= 0,
∂ fi(x,u)
∂xi+1

�= 0 and if j < i+1,
∂ fi(x,u)
∂x j−1

= 0,
∂ fi(x,u)
∂xi−1

�= 0

2. The system has only 2 outputs and for any x ∈Ω, y1 = h(x1) with
dh(x1)

dx1
�= 0 and y2 = h(xn) with

dh(xn)
dxn
�= 0.

These output properties are called upper and lower measured respectively.
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↘ x1 x2 x3 x4 x5 x6 x7 ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 ẋ6 ẋ7 f1 f2 f3

c1 1 1 1

c2 1 1 1 1 1

c3 1 1 1 1

c4 1 1 1 1 1

c5 1 1 1 1

c6 1 1 1 1 1

c7 1 1 1

d1 1 1

d2 1 1

d3 1 1

d4 1 1

d5 1 1

d6 1 1

d7 1 1

Table 1: Incidence Matrix

3. Independent on the set of admissible u(t), the existence of a fault pi produces a deviation of the output such
that the ‖y(t)− y0(t)‖ �= 0, where y0(t) is the output of the system without fault pi.

4. The distribution vector Fi(x) of the fault has n−1 zero elements with only the component i different from 0.

The objectives is the determination of measured variables which allow the detection and isolation of two faults.
The start point of the analysis are the constraints C = {c1, ...,cn,d1, ...,dn}, obtained from each state equation

of (8) and constraints x2i := dxi
dt called (di), the known variables K = {y1,yn,u1,u2} , the unknown variables

X = {x2,x3, ...,xn−1, ẋ1, ẋ2, ...ẋn}, and the unknown faults F = {p1, p2}. The incidence matrix form is shown in
Table 3 for n = 7.

In absence of fault, the decomposition of the incidence matrix indicates that the whole system is G +, |C | > |X |
and diverse paths exist to link the set K . Considering property (4) and that the faults p1 and p2 affect directly only
the state variables pair (xi,xi+k) the five constraints associated to (p1, p2 are at most

ẋi−1 = fi−1(xi−2,xi−1,xi,u) (ci−1)

ẋi = fi(xi−1,xi,xi+1,u)+Fi(x)p1 (ci)

ẋi+1 = fi+1(xi,xi+1,xi+2,u) (ci+1)

ẋi+k = fi+k(xi+k−1,xi+k,xi+k3,u)+Fi+k(x)p2 (ci+k)

ẋi+k+1 = fi+k+1(xi+k,xi+k+1,xi+k+2,u) (ci+k+1)

Moreover using property (2) of the system, the paths

P1 : y1−d1− ẋ1− c1− x2−d2− ẋ2− c2− x3...− y2−dn− ẋn (9)

and
P2 : y2−dn− ẋn− cn− xn−1−dn−1− ẋn−1...− c2− y1−d1− ẋ1 (10)

can be defined and if {u1,y1} and y2 and u2 are assumed initial and target vertices respectively, the redundant
graphs with C1 and C2 the constraints set associated to (9) and (10)

RG 1(C1;u1,y1;y2) (11)

RG 2(C2;u1,y1;u2) (12)

are generated and both are inconsistent if a fault occurs. If more than two sensors exist, the redundancy of the
system is increased and the extra measures robustify the diagnosis. If fault p1 occurs, only one constraint ci must
be eliminated from the paths and the redundancy is reduced. Assuming three initials vertices in the matching
process, paths without crossing one of the even constraints can be selected. (i.e without ci). For example if the
initial set is Us3 = {u1,y1,y2} a path without touching ci+2 which is affected by the fault p2 is obtained resulting

RG 3(C \{ci+2,di+2};Us3;u2) (13)

These results have been as well obtained for a pipeline model with leaks by geometric approach [6].

In the case of two Faults, since
∣∣C \{ci,c j}

∣∣ = |X |, there is not redundancy and the whole system cannot be
evaluated; only there is a solution for particular faults configurations. To study the possibility to determine a
subset, which allows to generate a residual sensitive only to one fault, one must search for a subgraphs Xm ⊂X
in which a RG exists for each particular combination of faults.
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Figure 1: Residual for 2 faults

1. Faults pair getting C f = {ci,ci+k} with k≤ 2. From this set of constraints and paths (9) and (10) one see that
one can calculate the unknown variables until point ẋi from x1 in P1 and ẋi+1 from xn in P2. This evaluation
disregards constraints pair (ci,ci+k) and at most constraint ci+1. Assuming known the value of the state xi+1

at the time (t f ) that the faults occur, one can evaluate

dx̂i+1

dt
= fi+1(xi, x̂i+1,xi+2,u) x̂i+1(t f ) = xt f

increasing the cardinality of X and getting
∣∣C \C f

∣∣ = |X |.
Finally, using C f one can define as a RR: 0 =−x̂i− xi |P1 , considering path P1 with ci to calculate xi |P1 for
p1 and 0 =−x̂i− xi |P2 considering now path P2 to compute xi |P2 for p2.

2. Faults C f = {ci,ci+k} with k > 2. There is not redundant graph and faults can be isolated. Moreover, the
number of constraints associated to the faults increase and two points appears in the paths which can not be
related by an intermediary constraint. Then, the faults pair cannot be isolated and new sensors, which joint
the paths are required.

Then, if the states associated to the faults can be compacted in a block of the path, as case 1, one can find RG for
the isolation issue. If the faults are not compacted in a subsystem they cannot be isolated.

Considering the fluid model in a pipeline taken from [5] divided in 3 sections with x ∈ ℜ14 the inconsistent RRs
with the behavior of Fig. 1 for 2 faults are obtained.

Conclusions. The Redundant Graph has shown to be a useful aid to study the faults isolability of systems. In
particular for a Hessenberg form, it helps to identify where sensors must be added to improve the diagnosticability
to faults. Moreover one can easily determine which kind of fault are impossible to detect or to isolate from the
structure of the system. This model analysis must be done before one selects the FDI procedure for a particular
problem.
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