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Abstract. Behavioral simulation of machine tools is using discrete structural models. These models
result from a finite element analysis being applied to their mechanical structure. Therefore they are in
general sparse but very large since many details have to be resolved. This accounts for unacceptable
computational and resource demands in simulation and especially control of these models. To reduce
these demands and to be able to compute solutions and controls in acceptable, i.e. applicable, time
frames model order reduction is applied. Classically modal truncation is used for this task. The reduced
order models (ROMs) generated are normally relatively large and often need manual modification by
addition of certain technically motivated modes. That means they are at least partially heuristic and
cannot be generated fully automatic. Engineers are therefore searching for alternate reduction methods.

Here we will concentrate on the application of balancing based model order reduction techniques.
A central topic is to provide a reduced order model for the construction and parameterization of a
practicable controller for the application. Our main focus will be on presenting a way to efficiently
compute the ROM exploiting the sparsity and second order structure of the FEM semi-discretization,
rather than presenting a new reduction technique.

1 Introduction
This paper reports on results obtained within a project1 concerned with model reduction for FEM models of
machine tools. These models include the control structure and a model of the stock removal process. Since the
FEM models need to resolve many features (geometric, as well as structural, see, e.g., Figure 1) the modeling often
leads to rather complex and very high dimensional systems of differential equations. In order to design practical
controllers meeting real-time restrictions given by the application the need to reduce the dimension of these plant
models arises.

The classical approach in the reduction of the plant models by engineers is modal truncation [14, 25, 13]. Although
leading to fairly good approximations the resulting models are at least partially heuristic. Many aspects in these
models need fine-tuning by hand, i.e., special technically motivated modes need to be added by experience of the
engineer. Also modal truncation reductions normally yield relatively large models that prevent modern controller
design (as usually, order of controller ≥ order of plant model). Thus they are of no use in the application subject to
this project. Therefore, alternative and more automatic reduction methods are currently being investigated in the
computational engineering literature (see the list of references below).

A major aspect in the special applications considered here is that modeling the machine tool plants generally leads

1DFG project BE 2174/9-1 “WAZorFEM”, see http://www.tu-chemnitz.de/mathematik/industrie_technik/projekte/

wazorfem. This is a joint project of the working group Mathematics in Industry of Technology (MiIT) at TU Chemnitz, Institute for Ma-
chine Tools and Industrial Management (iwb) at TU Munich and the Institute for Computational Mathematics M (ICM) at TU Braunschweig.

Figure 1: Finite element analysis structural model for an example machine tool
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to second order differential equations. While the reduction of linear first order models is fairly well understood in
the literature, the reduction of second order models is a field of current research. Especially the preservation of the
second order structure in the reduced order model has been an active topic during recent years.

The open literature provides two large classes of methods for second-order structure models. These are based on
balancing [26, 11, 12, 29, 16] on the one hand, and Krylov subspace related, e.g., [2, 24, 1, 30, 21, 22] on the other
hand. Here we focus on balancing-related models as within the WAZorFEM project, Krylov subspace methods are
explored in the the work package treated at ICM, see related paper [15].

1.1 The Simulation Model

The integrated simulation of the machine tool consists of two major parts: The structural model of the machine tool
representing its behavior and reaction on certain control inputs, on the one hand, and the control loop generating
those inputs, on the other hand. The prior consists of a set of FEM semi-discretized partial differential equations
resulting in a large scale second order ordinary differential equation system of the form:

Mẍ(t)+Dẋ(t)+Kx(t) = Bu(t), y(t) = Cvẋ(t)+Cpx(t). (1)

Here, M,D,K ∈Rn×n are the sparse system matrices reflecting mass, damping and stiffness of the structural model,
B ∈ Rn×p is the input matrix, Cv,Cp ∈ Rm×n are the velocity and position output matrices, x(t) ∈ Rn is the state,
y(t) ∈ Rm the measured output and u(t) ∈ Rp represents the input signals sent to the system. In the special case
discussed here the damping is considered to follow Rayleigh damping modeling, i.e., the damping matrix is a
proportional to mass and stiffness and given as

D = αM +βK,

for certain α,β ∈R.

1.2 Transformation to First Order

The task of model order reduction now is to find a ROM that captures the essential dynamics of the system and
preserves its important properties. Since (1) is of second order we can essentially follow two paths during the
computation of the reduced order model. We could decide to preserve the second order structure of the system and
compute a second-order reduced model of the form

M̂ ¨̂x(t)+ D̂ ˙̂x(t)+ K̂x̂(t) = B̂u(t), ŷ(t) = Ĉv ˙̂x(t)+Ĉpx̂(t), (2)

where k � n and M̂, D̂, K̂ ∈ Rk×k, B̂ ∈ Rk×p, Ĉv,Ĉp ∈ Rm×k and x̂(t) ∈ Rk. Unfortunately, the global balanced
truncation error bound for the reduction is lost if the structure preserving balanced truncation is applied follow-
ing [26, 11, 29]. (Note that recently it was shown in [33] that it can be reestablished in special cases under
additional symmetry assumptions.)

On the other hand, still many simulation and controller design tools expect the system models to be of first order.
This motivates the computation of a first-order ROM

Ê ˙̂x(t) = Âx̂(t)+ B̂u(t), ŷ(t) = Ĉx̂(t). (3)

Here again k � n and Ê, Â ∈Rk×k, B̂ ∈Rk×p, Ĉ ∈Rm×k and x̂(t) ∈Rk.

The main idea behind both approaches is to rewrite (1) in first order representation and apply balanced truncation
to the equivalent first-order model. This can be achieved, e.g., by phase space transformation. That means we
introduce the new state variable zT (t) := [xT (t), ẋT (t)], resulting in⎡⎣In 0

0 M

⎤⎦
︸ ︷︷ ︸

=:E

ż(t) =

⎡⎣ 0 In

−K −D

⎤⎦
︸ ︷︷ ︸

=:A

z(t)+

⎡⎣0

B

⎤⎦
︸︷︷︸
=:B

u(t), y(t) =
[
Cp Cv

]
︸ ︷︷ ︸

=:C

z(t), (4)

with E ,A ∈R2n×2n, B ∈R2n×p, C ∈Rm×2n and In ∈Rn×n the identity matrix. So the system is formally blown
up to double dimension.

1.3 Organization of this Paper

The main focus of our work is to show how the block structure of E , A , B and C in (4) can be exploited during
computation, such that we can directly work on the original data, i.e., with the original finite element matrices,
giving us the opportunity to exploit their sparsity and structure for efficient computation within an alternating
directions implicit (ADI) framework [28] employed for implementing balanced truncation for large-scale, sparse
systems [3]. This will be discussed in Section 2. Section 3 presents a method to reestablish the second order
structure of the original system (1) also for the ROM. Section 4 describes two test examples and shows results of
the corresponding numerical experiments. Finally in Section 5 we give some conclusions and an outlook on future
tasks concerning this research project.
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2 Computation of Reduced Order Models by Balanced Truncation
The efficient algorithms for the computation of the reduced order models resulting from the second order equa-
tion (1) can be derived from the aforementioned ADI framework in 2 stages. Starting with a revision of the ADI
framework [28, 23, 6] for standard state space systems

ẋ = Ax+Bu, y = Cx, (5)

in the next section, we will then discuss an extensions of these algorithms for the computation of reduced order
models considering generalized state space systems

Eẋ = Ax+Bu, y = Cx (6)

in Section 2.2. As the second stage we show how the structure of the system matrices in equation (4) can be
exploited in the algorithms for generalized state space systems in Section 2.2. That enables us to work directly
on the data given in the second order model (1). This will especially allow us to exploit special properties (e.g.
symmetry) of the original data in the solvers involved.

2.1 Large Scale Sparse Standard State Space Systems

We are considering balancing based model order reduction[27] throughout this paper. There the main task is to
solve the observability and controllability Lyapunov equations

AP+PAT = −BBT , AT Q+QA = −CTC. (7)

From these we compute projection matrices Tl and Tr such that the ROM

˙̂x(t) = Âx̂(t)+ B̂u(t), ŷ(t) = Ĉx̂(t), (8)

is computed as
Â = TlATr, B̂ = TlB and Ĉ = CTr. (9)

As A is assumed to be stable and thus P and Q are positive semi-definite, there exist Cholesky factorizations
P = ST S and Q = RT R. In the so-called square-root balanced truncation (SRBT) algorithms [32, 20] these are used
to define the projection matrices

Tl = Σ
1
2
1 V T

1 R and Tr = STU1Σ
1
2
1 (10)

determining the reduced order model. Here Σ
1
2
1 , U1 and V1 are taken from the singular value decomposition

SRT = UΣV T =
[
U1U2

]⎡⎣Σ1 0

0 Σ2

⎤⎦⎡⎣V T
1

V T
2

⎤⎦ , (11)

where Σ= diag(σ1, . . . ,σn) is assumed to be ordered such that σ j ≥ σ j+1 ≥ 0 for all j and Σ1 = diag(σ1, . . . ,σr)∈
Rr×r. If σr > σr+1 = 0 then r is the McMillan degree of the system (i.e. minimal degree) and the resulting ROM
is a minimal realization. A Laplace transformation of (5) defines the transfer function matrix (TFM)

G(s) := C(sI −A)−1B, (12)

which directly maps the inputs of (5) to its outputs. Analogously the TFM Ĝ(s) for (8) is defined. For the TFM
error, the global bound

‖G− Ĝ‖∞ ≤ 2
n

∑
j=r+1

σ j (13)

can be proven [18].

For large scale sparse systems it is infeasible to compute either P, Q, or their Cholesky factors, since they are
generally full matrices requiring O(n2) memory for storage. Thus, in the low rank ADI (LR-ADI) framework
one exploits that both P and Q normally have very low rank compared to n. Therefore the Cholesky factors are
replaced by low rank Cholesky factors (LRCFs) in the above defining the low rank square root balanced truncation
method (LR-SRBT). The low rank factors can be computed directly by the low rank Cholesky factor ADI iteration
(Algorithm 1, see also [6] for a strictly real version).

Note that we need to perform essentially three types of operations. These are: multiplications with the operator F
and the solutions of linear systems with F , which are required to determine the shift parameters pi [7]. Moreover,
for the iteration in Algorithm 1, we need to be able to solve shifted linear systems with F , i.e., we must apply
(F + piI)−1.
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Algorithm 1 (Low-rank Cholesky factor ADI iteration (LRCF-ADI))

Input: F ,G defining FX +XFT = −GGT and shift parameters {p1, . . . , pimax}
Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ X

1: V1 =
√−2Re(p1)(F + p1I)−1G

2: Z1 = V1

3: for i = 2,3, . . . , imax do
4: Vi =

√
Re(pi)/Re(pi−1)(Vi−1 − (pi + pi−1)(F + piI)−1Vi−1)

5: Zi = [Zi−1 Vi]
6: end for

2.2 Large Scale Sparse Generalized State Space Systems

We will now concentrate on generalized state space systems of the form (6). The natural observability and control-
lability Lyapunov equations for this system are the generalized Lyapunov equations

APET +EPAT = −BBT , AT QE +ET QA = −CTC. (14)

Throughout this paper we assume, that E ∈ Rn×n is invertible. If so, we can formally rewrite the system into
standard state space representation by simply multiplying by its inverse from the left, resulting in

ẋ = E−1A︸ ︷︷ ︸
=:Ã

x+E−1B︸ ︷︷ ︸
=:B̃

u, y = Cx. (15)

Following (5), (7) the observability and controllability Gramians for (15) solve the equations

ÃP̃+ P̃ÃT = −B̃B̃T , ÃT Q̃+ Q̃Ã = −CTC. (16)

Inserting the definitions of Ã and B̃ we observe that P̃ = P, but Q̃ = ET QE. So when rewriting Algorithm 1, we
need to keep track of all changes carefully to examine whether the final version is actually solving (7) or (16).

The final goal in modifying the algorithm however is to keep the increase in the per step computations as small
as possible. Note especially, that transforming the solution of (7) to that of (16) or vice versa only requires one
sparse matrix multiplication or one sparse linear system solve with E respectively due to the symmetry of the
factorizations we are computing. Both can be computed with O(n) complexity.

In the following we consider the Lyapunov equation

FX +XFT = −GGT

and distinguish the two cases:

1. F = Ã = E−1A, G = B̃ = E−1B, and X = P;

2. F = ÃT = AT E−T , G = CT , and X = Q.

The first of which is the easy case since we already observed, that the solutions of the two Lyapunov equations
containing B are equal. Let us now consider the two critical steps in the algorithm. These are the initialization of
the LRCF (line 1) and its incrementation (line 6). Starting with the initialization we find:

V1 =
√

−2Re(p1)(F + p1I)−1G

=
√

−2Re(p1)(A+ p1E)−1EG

=
√

−2Re(p1)(A+ p1E)−1B.

Analogously for the increment we observe:

Vi =

√
Re(pi)

Re(pi−1)
(Vi−1 − (pi + pi−1)(F + piI)−1Vi−1)

=

√
Re(pi)

Re(pi−1)
(Vi−1 − (pi + pi−1)(E−1A+ piI)−1Vi−1)

=

√
Re(pi)

Re(pi−1)
(Vi−1 − (pi + pi−1)(A+ piE)−1EVi−1).
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Algorithm 2 (Generalized Low-rank Cholesky factor ADI iteration (G-LRCF-ADI))

Input: E, A and B, or C as in (14) and shift parameters {p1, . . . , pimax}.
Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ P, Q in (14), respectively.

1: if right hand side given is C then
2: A = AT , E = ET , G = CT

3: else
4: G = B
5: end if
6: V1 =

√−2Re(p1)(A+ p1E)−1G
7: Z1 = V1

8: for i = 2,3, . . . , imax do
9: Vi =

√
Re(pi)/Re(pi−1)(Vi−1 − (pi + pi−1)(A+ piE)−1(EVi−1))

10: Zi = [Zi−1Vi]
11: end for

Thus, in both steps we can shift with the mass matrix E instead of the identity at the cost of an additional sparse
matrix vector product. The cost for the solution of the shifted linear system here does not change considerably.
Surely, it will be slightly more expensive to compute the sparse matrix sum A+ piE in order to set up the coefficient
matrix for sparse direct solvers, than just adding pi to the diagonal of A when no mass matrix is present. On the
other hand, since A and E are normally arising in the same context (e.g. from a finite element semi discretization),
they will in general have the same sparsity pattern, such that the computational and memory complexity for the
actual solve does not change. For iterative solvers the change comes at the cost of one additional sparse matrix
vector product and one vector-vector addition per iteration step. Note especially that we do not even have to
compute B̃ = E−1B. Instead we can directly initialize the computation with the original B.

For the case where F = ÃT , we first note that

I − (pi + pi−1)(F + piI)−1 = (F + piI)−1(F − pi−1I),

and therefore

Vi =

√
Re(pi)

Re(pi−1)

(
Vi−1 − (pi + pi−1)(F + piI)−1Vi−1

)
=

√
Re(pi)

Re(pi−1)
(F + piI)−1(F − pi−1I)Vi−1.

Inserting this in Algorithm 1 we get

Vi =

√
Re(pi)

Re(pi−1)
(F + piI)−1(F − pi−1I)Vi−1

=

√
Re(pi)

Re(pi−1)
((AT + piET )E−T )−1((AT − pi−1ET )E−T )Vi−1

=

√
Re(pi)

Re(pi−1)
ET (AT + piET )−1(AT − pi−1ET )E−TVi−1

= ET

(√
Re(pi)

Re(pi−1)

(
I − (AT + piET )−1ET ))

E−TVi−1.

Now observing that the multiplication with ET in the i-th step is canceled by the E−T in the (i + 1)-st step, we
see that in this case the actual iteration operator changes exactly the same way as above. For the initialization step
(line 1) we also have

V1 = ET
√
−2Re(p1)(AT + p1ET )−1CT .

That means the above also holds for i = 1. The multiplication with ET here determines whether we are actually
computing the solution factor for Q from (14) or Q̃ from (16).

Avoiding ET completely is obviously the cheapest choice. We then compute the solution of the generalized Lya-
punov equation. This is desirable if we can work with generalized ROMs. There we solve the generalized Lya-
punov equation and determine the projection matrices Tl and Tr in (10) with respect to these generalized Gramians.
The ROM (3) is then computed as (see e.g. [9])

Ê = TlETr, Â = TlATr, B̂ = TlB and Ĉ = CTr. (17)

If we necessarily need a standard state space form ROM, we can use Algorithm 2 to compute R = R̃, S with
RRH = P = P̃ and SSH = Q and transform S to S̃ (the factor of Q̃) in a post processing step.
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2.3 Large Scale Sparse Second Order Systems

Following the technique presented in the introduction, we trace the reduction of the second order system back to
the reduction of a generalized first order system of double dimension. That means the main task in this section
will be to map the matrix operation x = E −1A f , E −1A x = f and (A + pE )−1E as well as x = (E −1A )T f ,
(E −1A )T x = f and (A T + pE T )−1E T to operations with the original system matrices M, D, K of (1). In the
following we will always decompose x, f ∈ R2n into x = [xT

1 xT
2 ]T and f = [ f T

1 f T
2 ]T where x1, x2, f1, f2 ∈ Rn to

have them fit the block sizes in E and A .

For the linear algebra operations involved in the ADI iteration for computing the controllability and observability
Gramians, we show in the following list how to perform these operations using original data from the second-order
model only:

x = E −1A f ⇔ E x = A f ⇔ x1 = f2,

⇔Mx2 = −K f1 −D f2

x = (E −1A )T f ⇔ x = A T E −T f ⇔ MT f̃2 = f2,

⇔x1 = −KT f̃2,

⇔x2 = f1 −DT f̃2

E −1A x = f ⇔ A x = E f ⇔ x2 = f1,

⇔Kx1 = −M f2 −D f1

(E −1A )T x = f ⇔ A T E −T x = f ⇔ KT x̃2 = − f1,

⇔x1 = f2 +DT x̃2

⇔x2 = MT x̃2

x = (A + pE )−1E f ⇔ (A + pE )x = E f ⇔ (p2M− pD+K)x1 = D f1 −M( f2 + p f1),

⇔x2 = f1 − px1

x = (A T + pE T )−1E T f ⇔ (A T + pE T )x = E T f ⇔ f̃2 = MT f2,

⇔(p2MT − pDT +KT )x2 = p f̃2 − f1,

⇔x1 = f̃2 +DT x2 − pMT x2

From the rightmost column we see that we can perform all matrix operations needed by Algorithm 2 and its
preceding parameter computation directly using the original system matrices M, D, K, B, Cp, Cv. Computation
of the two matrix polynomials and their usage in sparse direct solvers is cheap with the same arguments as in
Section 2.2. The important message here is that exploiting the block structure of the 2n× 2n matrices in the
equivalent first order representation, we can reduce the computational and storage cost to essentially O(n). That
means all system matrices can be stored in O(n).

3 Regaining the Second Order Structure for the Reduced Order Model
Second order balanced truncation has been introduced in [26]. The general idea for reducing the second order
system to a second order ROM is essentially as follows: the system (1) is equivalently rewritten to first order form
(4). Then from the first order system the balancing matrices are obtained. To this end, second order Gramians are
defined in [26] based on the equivalent first order system in standard state space form

.⎡⎣x

ẋ

⎤⎦ =

⎡⎣ 0 In

−M−1K −M−1D

⎤⎦⎡⎣x

ẋ

⎤⎦+

⎡⎣ 0

M−1B

⎤⎦u, y =
[
Cp Cv

]
u.

For this system the Gramians P and Q as in (7) are computed. These are compatibly partitioned as

P =

⎡⎣Pp Po

PT
o Pv

⎤⎦ , Q =

⎡⎣Qp Qo

QT
o Qv

⎤⎦ . (18)

The second order position Gramians are given as Pp and Qp. Analogously Pv and Qv define the velocity Gramians.
Using pairs of these we can now define the position balanced (Pp,Qp), velocity balanced (Pv,Qv), position-velocity
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balanced (Pp,Qv) and velocity-position balanced (Pv,Qp) ROMs following [29, Definition 2.2]. Now, e.g., the
position balancing Gramian pair (Pp,Qp) takes the role of (P,Q) in the computation of the projectors Tl and Tr
in (10) and the reduced order system (2) is obtained according to

M̂ = TlMTr, D̂ = TlDTr, K̂ = TlKTr, B̂ = TlB and Ĉv = CvTr Ĉp = CpTr.

In order to preserve stability and symmetry of the original system, projection can also be performed by an orthog-
onal matrix T as in

M̂ = T T MT, D̂ = T T DT, K̂ = T T KT, B̂ = T T B and Ĉv = CvT Ĉp = CpT,

where T can be obtained, e.g., from the range of Tr. In general for a non-symmetric system we will not have
T T

l = Tr and thus the balancing of the Gramian product (11) is no longer ensured. Therefore also the global error

bound (13) is lost. For systems where M, D, K are symmetric, Cv = 0 and Cp = BT [33] reestablishes the error
bound. The key idea there is to use the equivalent first order model⎡⎣−K 0

0 M

⎤⎦ ż(t) =

⎡⎣ 0 −K

−K −D

⎤⎦z(t)+

⎡⎣0

B

⎤⎦u(t), y(t) =
[
BT 0

]
z(t), (19)

and thus regain the symmetry in the first order system. Although these conditions might seem rather academic,
there is a large class of systems arising in electrical engineering when developing RLCK circuits, which have
exactly these properties. Velocity balancing, position-velocity balancing and velocity-position balancing can be
applied similarly (see [29] for details).

In the following, we present a method that no longer requires to compute the full Gramians for the first order
representation to obtain the second order Gramians. Instead we rather compute low rank Cholesky factors of the
second order Gramians from low rank Cholesky factors of the first order Gramians, which again enables us to
perform all computations in low rank fashion and thus reduces the expenses to those of the ADI framework.

Let S be a low rank Cholesky factor of the Gramians Q computed by the (G-)LRCF-ADI Algorithm for either
of the two first order representations. Note that the block structure in (19) can be exploited analogously to the
procedure presented in Section 2.3. Note further that we have S̃1 = S1 since the (1,1)-block in E is In in (4). For
the transformation (19) we need to consider −K for transforming the LRCFs S1 and S̃1. We can now compatibly
partition SH = [SH

1 SH
2 ] as above and⎡⎣Qp Qo

QT
o Qv

⎤⎦ = Q = SSH =

⎡⎣S1

S2

⎤⎦[
SH

1 SH
2

]
=

⎡⎣S1SH
1 S1SH

2

S2SH
1 S2SH

2

⎤⎦ .

Hence, Qp = S1SH
1 , such that the second order low rank Cholesky factor is directly given as the upper n rows

S1 of the low rank Cholesky factor S. Analogously, we can compute the LRCF R1 of the second order position
observability Gramian Pp from the LRCF R of the first order Gramian P. Also, using the lower n rows of the first
order Gramian factors we can compute the second order velocity Gramians in case we want to apply any sort of
velocity based balancing.

4 Numerical Experiments
In this section, we present some numerical results for balanced truncation applied to second-order models. The
models resulting from machine tool models as described in the Introduction contain stiff springs and rigid body
modes resulting in systems with zero and infinite poles. These cannot be handled with the methods described in
this paper. Modifications to deal with these issues have been derived within the WAZorFEM project work, see [4],
and are also known for first-order problems [17, 31], but are not yet available in the software used for performing
the tests for large-scale problems. Current work includes incorporating these modifications and corresponding
numerical experiments will be reported in the future. For these reasons we chose two second-order models with
invertible mass matrix from a different application area in order to demonstrate the efficiency of the proposed
algorithms.

Second order structure of the model also arises in many applications where micro mechanical systems are con-
cerned. As two examples of such systems we are using the Butterfly Gyro example [10] from the Oberwohlfach
Model Reduction Benchmark Collection 2 and a micro mechanic acceleration sensor investigated at FhG IIS/EAS
Dresden in cooperation with Robert Bosch GmbH [19]. Sections 4.1 and 4.2 give brief introductions to the two
models followed by a presentation of the reduction results. Also we compare with results we obtained with the
parallel matrix sign function implementation in PLiCMR [8] on the Chemnitz Linux Cluster CHiC [5]. All com-
putations have been carried out on an Intel Xeon Dual Core 3.0 GHz machine running 64 GB RAM. Note that this

2http://www.imtek.de/simulation/benchmark/
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(a) The Butterfly Gyro (b) Base Configuration of an accelera-
tion sensor

Figure 2: Example model schematics

(a) Stiffness matrix for the Butterfly Gyro (b) Stiffness matrix for the acceleration sensor example

Figure 3: Sparsity patterns of the second order system matrices

is a 64Bit architecture allowing us to address more than 2GB RAM in MATLAB, which is the main reason to use
it. Also the results shown here have been achieved using the reference implementation of Algorithm 2 found in the
appendix applied directly to the equivalent first order models. (The primary reason for the need of more than 2GB
memory.) The structure exploitation presented in Section 2.3 will go directly into the M.E.S.S. MATLAB-toolbox3

and should drop the memory requirement below 2GB for both examples making them computable on standard
32Bit workstations.

4.1 The Butterfly Gyro

The Butterfly Gyro is a vibrating micro mechanical gyro for application in inertial navigation. The gyroscope
is a three layered silicon wafer stack of which the actual sensor element is the middle layer. The name of the
device is derived from the fact, that the sensor is set up as a pair of double wings connected to a common beam
(See Figure 2 (a)). The input matrices have been obtained by an ANSYS model. The original model consists
of 17,361 degrees of freedom resulting in an order 17,361 second order original model. Thus the equivalent first
order original model is of dimension 34,722. Both systems have a single input and 12 outputs and the number
of nonzero entries in the system matrices is of order 107 (see also Figure 3 (b)). The reduction results can be
found in Figure 4. The ROM here is of order 18 and has been computed in roughly 1 hour including pre- and
postprocessing. Here, preprocessing means assembly of the first order original system and computation of the
shift parameters. Here we used 20 parameters following the heuristic parameter choice as proposed by Penzl.
Postprocessing is the computation of the original and reduced order Bode plots, as well as the absolute and relative
approximation errors at 200 sampling points. In comparison the computation of an order 45 ROM on 256 nodes
of the CHiC using PLICMR plus postprocessing on the same Xeon machine as above can be done in roughly half
the time, but results show slightly worse numerical properties, i.e., errors there are a bit larger.

3http://www.tu-chemnitz.de/mathematik/industrie_technik/software/mess.php?lang=en
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Figure 4: Results for the Gyro example
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Figure 5: Results for the acceleration sensor example

4.2 Micro mechanic Acceleration Sensor

The basic structure of the micro mechanic acceleration sensor consists of a seismic mass coupled to two beam
configurations at both its ends (See Figure 2 (b)). The beam configurations as well as the seismic mass have
been modeled by beam elements and connected by coupling elements. The original simulations [19] have been
performed using SABER and ANSYS. The model has 4 inputs an 3 outputs. The order of the second order
system is 27,225 resulting in an equivalent first order system of order 54,450. Although the system is considerably
larger, the number of nonzero elements is about the same as in the gyro example case (see Figure 3 (a)). The
single computation steps here are the same as for the gyro example. Here we used 25 shift parameters and the
computation took about 1 hour as in the gyro example. The larger dimension is compensated by the fact, that
here especially the controllability Gramian factor computation converged in only 23 steps to the required accuracy.
The ROM, for which the results can be found in Figure 5, is of order 25. Here we cannot provide a comparison
with the CHiC experiments, since PLICMR crashed for this model due to memory allocation errors in the required
ScaLAPACK routines.

5 Conclusions
We have shown that the G-LRCF-ADI delivers an efficient framework for the computation of low rank factorized
solutions of (generalized) Lyapunov equations arising in balanced truncation contexts for generalized first order
systems, as well as second order systems. Although generally MOR methods for second order systems require
to reformulate the problem for an equivalent double sized first order system by phase space transformation, we
showed that the special structure of the block matrices in the first order forms can be exploited to work directly
with the sparse n×n-dimensional matrices instead of the generally full 2n×2n matrices of the standard state space
first order form. Also we presented an extension of the Meyer/Srinivasan approach that allows us to compute the
factors of the second order Gramians directly from the low rank Cholesky factors for the equivalent first order form,
without having to compute the full Gramians. Numerical experiments have shown the efficiency of our method and
proof that our single processor MATLAB codes are even competitive with the parallel computer implementation of
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the matrix sign function method in PLICMR.

As mentioned earlier the integration of the methods for the descriptor case, i.e., the case where the mass matrix is
no longer invertible, is subject to current research and implementation work. The results and especially numerical
experiments for the machine tool models will be presented in upcoming joint WAZorFEM publications.
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7 Appendix
function [Z,res,niter]=lrcf_g_adi(F,G,E,p,maxiter,rtol,type)

% function [Z,res,niter]=lrcf_g_adi_r(F,G,E,p,maxiter,rtol)

%

% Generates a low rank matrix Z such that X=Z*Z.’ solves the

% Lyapunov equation:

%

% F*X*E’ + E*X*F’ = G*G’ (1)

%

% Inputs:

%

% F,G,E The matrices F,G and E in the above equation (1).

% p a vector of shift parameters

% maxiter maximum iteration number.

% rtol normalized residual stopping criterion tolerance

% type type of the Lyapunov equation:

% ’B’ -> A*X*E’ + E*X*A’ = B*B’

% ’C’ -> A’*X*E + E’*X*A = C’*C

%

% Outputs:

%

% Z The solution factor Z such that Z*Z’=X solves (1).

% res the vector of residuals

% niter the number of iteration steps taken

%

% input parameters not checked!

n=size(F,1);

l=length(p);

if type==’C’

F=F’;G=G’;E=E’;

else

if type~=’B’

error(’type has to be one of ’’B’’, ’’C’’ ’);

end

end

gnorm=normest(G*G’);

pc=p(1);

V1=sqrt(-2*real(pc))*((F+pc*E)\G);

Z=V1;

res=zeros(1,maxiter);

res(1)=res2g(F,G,E,Z)/gnorm;

fprintf(1,’step: %4d normalized residual: %d\n’,1,res(1));

for i=2:maxiter

ip=mod(i+l-1,l)+1;

pp=pc;

pc=p(ip);
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V1=sqrt(real(pc)/real(pp))*(V1-(pc+conj(pp))*((F+pc*E)\(E*V1)));

Z=[Z V1];

res(i)=res2g(F,G,E,Z)/gnorm;

fprintf(1,’step: %4d normalized residual: %d\n’,i,res(i));

if (res(i)<rtol)||(norm(V1,2)/normest(Z)<n*eps)

break;

end

end

niter=i;

function nor = res2g(F,G,E,Z)

% function norm = res2(F,G,E,Z)

%

% Computes the 2 Norm of the Lyapunov residual of Z exploiting the

% symmetry of the residual operator

%

% R := F*Z*Z’*E’ + E*Z*Z’*F’ + G*G’

%

% That means it computes the spectral radius of this operator by a

% power iteration, exploiting the sparsity of F and rectangular

% structure of Z and G. Thus it can be computed in O(n) effort and

% is therefore much cheaper than the computation of e.g. the

% Frobenius norm.

n=size(F,1);

tol=sqrt(eps);

% Initialization of normalized iteration vector

q0=ones(n,1);

q0=q0/norm(q0);

% The Power Iteration

s=1;sold=0;i=0;

FZ=F*Z;

while(((abs(s-sold)/s)>tol)&&(i<20))

sold=s;

%perform the matrix multiplication

q0=FZ*(Z’*(E’*q0))+E*((Z*(FZ’*q0))+(G*(G’*q0)));

q0=q0/norm(q0);

%compute the Rayleigh quotient

y1=Z’*(E’*q0);

y2=FZ’*q0;

y3=G’*q0;

s=real(2*(y1’*y2)+y3’*y3); % should be redundant but cuts of numerical

% erroneous imaginary parts.

i=i+1;

end

nor=abs(s);
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