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Abstract. This paper presents methods for sensitivity analysis applied to a test rig model. On the 
one hand, the effect of parameter variations on system variables is analysed by means of parameter 
sensitivities of first and second order, while on the other hand − for the purpose of comparison − 
conventional Monte Carlo (MC) simulation is applied. Aspects like modelling, applicability and 
performance are discussed. The result evaluation leads to the conclusion that sensitivity calcula-
tion using parameter sensitivities − especially of second order and with respect to systems with a 
high number of parameters − is a serious alternative to MC analysis. The contents treated in this 
paper are based on results, which were developed in the Fraunhofer collaborative project “Com-
puter Aided Robust Design” (CAROD). 

1 Introduction 
The detection of critical parameter variations on a system’s characteristics is one of the major objectives in a 
robust design process. Tolerances of material parameters, manufacturing processes or assembly operations gen-
erally lead to scattering system properties. It must be assured that these properties are within a given range. Nu-
merical modelling and simulation is one method to investigate the consequences of parameter variations on the 
interesting characteristics. In the following it is assumed that the technical system to be analysed can be mod-
elled by a system of differential-algebraic equations. In this context, sensitivity analysis is an initial task to de-
termine parameters which highly affect the system behaviour. Furthermore, the knowledge of the relation be-
tween parameters and system characteristics may help to determine parameter ranges. As a general approach a 
Taylor series approximation using an appropriate order can be applied. In this context, parameter sensitivities 
can be determined in an efficient way. Therefore, the determination of first-order sensitivities is widely dis-
cussed, while typically higher order sensitivities are not used. Approaches to determine second-order sensitivities 
will be discussed in the following. 

The methods are applied to a model of a multi-axial elastomer test rig. Finally, based on the analysis results, the 
applicability and performance of the treated methods for sensitivity evaluation are discussed. 

2 Mathematical Model 
The equations of motion of the considered system are given by a differential-algebraic system of equations 
(DAEs)  
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∈)(tx Rn are implicitly defined waveform values (state variables) and ∈p Rm summarises the real-valued 

parameters ip . Applying implicit function rules, the system to determine first-order parameter sensitivities 
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which is equivalent to 
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A similar system can be established for cross sensitivities 

ji pp
x

∂∂
∂ 2

. It is obvious that higher order sensitivity 

equations depend on the state variables of the original system (1) and the vectors of lower order sensitivities. 
Therefore, the adjoint sensitivity approach cannot be applied directly to higher order sensitivity analysis. Thus, 
we apply algorithms to determine first-order sensitivities on a combination of (1) and (2) using the DAE solver 
DASPK [3] and the simulator Dymola. An alternative method for a special implementation to determine higher 
order sensitivities is a staggered solution of (1) and the sensitivity systems. Linear systems of equations with the 
same coefficient matrix have to be solved in this case. 

Dymola and DASPK were used to calculate both the solution and sensitivities. The DAE-system (1) together 
with the first-order sensitivity system (2) can concurrently be solved by Dymola, if (2) is added explicitly or 
using the difference quotient method of first order. Without use of first-order difference quotient an explicit 
determination of system of first-order parameter sensitivities (2) by differentiation of DAE system (1) is neces-
sary. After this, a manual extension of the model has to be determined. The code DASPK can directly solve (1) 
and (2), where the first-order sensitivity system (2) is generated within the code automatically. Furthermore, 
parameter sensitivities of second order (3) were computed with Dymola and DASPK. Calculations of second-
order sensitivities were carried out using explicit differentiation of (1) regarding specified parameters and manu-
ally extension of system (1). Contrary to DASPK, Dymola yields only an approximation of the second-order 
sensitivities if difference quotients of first respectively second order are used, which nevertheless represents a 
good approximation yet.  

3 Technical Example: Elastomer Test Rig 
The mathematical investigations are demonstrated by example of a multi-axial test rig model (figure 1). The 
physical test rig is mainly used for sign-off tests of automotive elastomer bushings considering service loads. 
Based on a transmission design with cardan joints, the load directions “axial ( x~ )”, “lateral (y)” and “torsion (�)” 
can be realised isolated or in combination respectively [4]. 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Multi-axial test rig for characterisation and testing of elastomer bushings and 
                sketch of a typical elastomer bushing for automotive application 

The investigations target a virtual scenario, which describes the production of a small series of (only) theoreti-
cally identical test rigs. Due to manufacturing tolerances the test rig components will differ more or less, leading 
to scattering of the test rigs behaviour. In the context of this presentation, tolerances of masses, inertias and 
damping coefficients are considered. The idea is to pre-evaluate the sensitivity of test rig performance due to 
variations of single parameters. Beside information concerning the performance scatter to be expected, promis-
ing “adjusting screws” for system optimization can be derived. 

To perform sensitivity calculation, the analytical equations of motion have been set up explicitly using the La-
grange approach. Thus, the system equations are available in symbolic form. The DAE system of the elastomer 
test rig is described by 3 equations of motion with 3 state variables )(~ tx , y(t) and α(t) as well as 23 system pa-
rameters. The analyses cover system excitations by sinusoidal forces and moments (test case 1), noise signals 
(test case 2) as well as signals of the type of ramp functions (test case 3). In test case 1 and 2 the excitations are 
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realised simultaneously, while test case 3 includes isolated uni-axial loads. The performance and dynamics of the 
test rig are evaluated by analysing the resulting displacements x~  and y as well as the torsion angle α at the mod-
elled elastomer bushing. 

An interesting aspect presents the sensitivity of scalar evaluation quantities. Sensitivities in general are functions 
of time t. These functions can be used as a basis for the derivation of scalar evaluation parameters, which are 
used to describe specific technical attributes, e.g. performance, accuracy or stability of a system. In this case, the 
temporal mean S1 and temporal quadratic mean S2  were used as scalar evaluation parameters. These are defined 
by 
 

    �−
=

2

1

)(1

12
1

t

t

dttE
tt

S           and                 ( ) , )(1 1
2

13
2

3

1

�
=

−
−

=
st

t

dtEtE
tt

S                      (4)  

whereas E is an arbitrary time-dependent function and �−
=

3

1

)(1

13

t

t

dttE
tt

E .  

The design objective is to minimise the scalars temporal mean S1 and temporal quadratic mean S2. 

4 Interpretation of Sensitivity Results 
Sensitivity calculation examines the effects of minor parameter deviations from their nominal values on the 
behaviour of the dynamic systems. The sensitivities were computed to detect critical parameters. Parameters 
with a significant influence on the interesting variable x~  regarding test case 1 are single component masses of 
the test rig model. In terms of test case 3, concerning scalar evaluation quantity S2, resulting displacement x~ , 
related to E in (4), the same component masses are dominant. Concerning sensitivities of y regarding test case 1 
also component masses have an influence while parameters with a significant influence to � are single compo-
nent inertias. 
The same critical parameters were identified by MC simulation [5]. However, the computational effort is much 
higher if the MC simulation runs are carried out using the original “full” test rig model.       

The Taylor series approach [2] using second-order sensitivities and regarding test case 3 and x~   
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whereas � x~ /�pi is the first-order and �2 x~ /�pi
2
 the second-order parameter sensitivity of x~  concerning parame-

ter ip , was compared to the result when solving the system’s equation (figure 2) directly. Figure 3 illustrates the 
comparison of the parameter varied (+10%) nominal solution (blue line) of the special displacement x~  regard-
ing specified parameter of mass mK and the solution using first-order Taylor approach (linear part of formula 
(5), red line) as well as second-order Taylor approach ((5), green line). Figure 3 shows obviously, that the Taylor 
approach of second order is a good approximation for the solution of the DAE system of the elastomer test rig 
and that the second-order Taylor approach represents a better approximation as the first-order Taylor approach.  

 

                                                                                        

 

 

 

 

 

 
 
 
 
 

 
 

Figure 2. Nominal solution; e1.AL hides e1.Y (Dymola) 
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Figure 3. Comparison of first- and second-order Taylor approaches and parameter varied (+10%) nominal solution; detail (Dymola) 

 

The second-order Taylor series based on sensitivity analysis can also be used to construct response surface mod-
els for MC simulation. 

5 Conclusion 
Sensitivities are well qualified to detect critical parameters of a system. In order to describe a nonlinear relation 
between parameters and system’s characteristics at least second-order sensitivities should be considered. These 
sensitivities can be determined in parallel to the solution of the original system to reduce the computational ef-
fort. Sensitivities of second order allow a good approximation of the solution and yield a reduction of computing 
time compared to MC methods. The potential of this approach was investigated using the model of an existing 
test rig for automotive applications. 

At the moment missing implementations to determine second-order sensitivities can be overcome by applying 
methods for first-order sensitivities on a combination of the original system and the first-order sensitivity equa-
tions. 
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