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Abstract. The established Discrete Event System Specification (DEVS) offers opportunities to 
comprehensively describe discrete event systems. In this paper the classic DEVS approach is ex-
tended with specifications and methods for continuous and variable structure modelling to hybrid 
models with a variable modular, hierarchical structure. To let engineers benefit from these power-
ful modelling instruments, they are integrated into the well-accepted and popular scientific and 
technical computing environment (SCE) Matlab. Furthermore, integration with other computing 
methods provided by the chosen SCE is obvious and can be accomplished. We appreciate DEVS 
based algorithms for modelling and simulation in SCEs as a complement and addition to existing 
tools as Simulink, Stateflow and SimEvents for engineering tasks such as e. g. discrete event-
based control design. Moreover, a SCE provides a prototyping environment for the evolution of 
the DEVS approach itself. 

1 Introduction 
Since Zeigler et al. introduced the Discrete Event System Specification (DEVS) in the seventies [8], many exten-
sions of the DEVS formalism where designed. This paper presents an approach for dynamic structure hybrid 
DEVS, the DSDEVS-hybrid formalism, depicts its formal modelling and simulation concepts and gives an over-
view on the implementation of the DSDEVS-hybrid toolbox for Matlab. 

Our modelling approach for modular hierarchical hybrid systems with structural variability at the coupled system 
level is based on the work in [6, 1, 4] and classic DEVS theory [9]. A dynamic structure system in DEVS context 
is a modular hierarchical system whose structure changes during simulation time. Hierarchical models are com-
posed of two system types, atomic and coupled models. Coupled models consist of other coupled models and/or 
atomic models. The dynamic behaviour of a system is reflected in atomic models, while dynamic structure is 
defined at the coupled system level. Dynamic structure changes are e.g. creation, deletion and exchange of mod-
els. Hybrid means that besides discrete model fractions, continuous model parts are contained, as well. 

There are two ways to approach those kinds of systems, resulting from the two general worldviews. One ap-
proach starts from the continuous modelling and simulation worldview and therefore extends a continuous model 
to a hybrid one. Discrete events are expressed as root-finding problems. The model is then simulated by a con-
tinuous simulation engine, i.e. it is processed by an ODE solver with discontinuity detection and localisation. 
Usually, in modular hierarchical modelling and simulation environments, the model structure is flattened before 
execution. Hence, hierarchical structure information is partly not available during simulation time and dynamic 
structure behaviour needs to be elaborately modelled at atomic system level. It seems to be more promising to 
gain access to the problem through the second worldview, the discrete event worldview. In that case a discrete 
simulator rules the simulation engine and calls an ODE solver to compute continuous model fractions. Among 
descriptions for discrete event system models and their simulators, we have chosen and enhanced the Discrete 
Event System Specification (DEVS). In contrast to other ongoing research, e.g. integration of DEVS into the 
Modelica language [7], that employs DEVS for the description of only the discrete part of hybrid models, the 
described approach takes DEVS as the basis. DEVS itself and particularly its related simulator concepts are 
extended with hybrid and at the same time dynamic structure features.  

2 Formal Modelling Concept 
An overview of the formalisms that underpin and extend DEVS theory is given by Zeigler et al. in [9]. One of 
several extensions of the basic DEVS formalism is the hybrid DEVS formalism presented by Praehofer [6]. 
Another approach for hybrid DEVS modelling was introduced by Kofman [3, 2], who proposes quantisation of 
the state variables instead of time discretisation to approximate differential equations. The suitability for dy-
namic structure modelling of this approach is not followed up in this paper. 

2.1 Atomic Model Specification 
Praehofer [6] defined a hybrid atomic system by the tuple 

( )tacfSYXA dsxcsehybrid ,,,,,,,,, int& λδδλ=      (1) 
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where X, Y, and S specify the set of inputs, outputs and states which may be continuous or discrete. Continuous 
dynamics are mapped by the rate of change function f  and the continuous output function cλ . Discrete events 
are internal, external and state events. State event conditions are defined using the state event condition function 

sec . External events and state events induce state transitions using the function sx&δ . Internal events activate the 
discrete output function dλ  and also the internal state transition function intδ . After each discrete state transition 
internal events are rescheduled by the time advance function ta . Local structural changes of the continuous 
dynamics can be modelled by structuring the dynamic description using logic variables inside the rate of change 
function f , the state event condition function sec and the continuous output function cλ . This definition for 
hybrid atomic DEVS fits for being combined with a coupled system definition for dynamic structure models. 
Hybrid behaviour is defined on atomic system level, while dynamic structure is modelled at coupled system 
level. 

2.2 Coupled Model Specification 
In order to allow dynamic structure behaviour, e.g. the creation, deletion and exchange of submodels, additional 
data structures to represent this dynamic need to be established. Barros [1] proposes to add a special atomic 
model called network executive to each coupled model which holds the structure information and describes the 
structure dynamics. In contrast to this approach we favour the extension of the classic DEVS coupled model 
definition in way that allows to hold structure information directly in the coupled model. The specification of a 
classic DEVS coupled model [6, 9] is as follows: 

{ }( )SelectICEOCEICDdMDYXN dNN ,,,,|,,, ∈=     (2) 

where NX  is the set of input values and NY  is the set of output values. The index N  stands for network model 
as synonym for coupled model. D  is the set of the component names, while dM  represents a dynamic subsys-
tem. The property of closure under coupling, which is ensured for classic coupled DEVS, enables the representa-
tion of every coupled DEVS as an atomic DEVS. Thus, dynamic subsystems may be other coupled DEVS mod-
els or atomic DEVS models. EOCEIC,  and IC define the coupling relations. The external coupling relation EIC  
connects external inputs to component inputs, the external output coupling EOC  connects component outputs to 
external outputs and the internal coupling IC  defines connections among components, i.e. component outputs 
are connected to component inputs. For couplings no direct feedback loops are allowed. Finally, Select  acts as a 
special function to prioritise one subsystem in case of simultaneous internal events in subsystems. 

To allow structure variability, some extensions of this coupled system’s definition have to be introduced. In the 
context of this work, possible structural changes at the coupled system level are 

• Creation, 
• Cloning, 
• Deletion and 
• Replacement of atomic or coupled subsystems, 
• Their movement between coupled systems and 
• Changes of couplings between system components. 

We call the actual composition of a subsystem set and its coupling relations the structure state. A dynamic struc-
ture DEVS can have different structure states Nn Ssss ∈,....,, 10 . Furthermore, structure dynamics information, e.g. 
the number and kind of structure changes already achieved, needs to be stored. The set of structural variables 

NH  holds this information. For a dynamic structure coupled DEVS the Select  function can depend on the struc-
ture state and structure dynamics information. Consequently, we define the set of sequential structure states NS  
of a dynamic structure coupled DEVS as: 

{ } SelectICEICEOCDdMDHS dNN ××××∈××= |     (3) 

This set of sequential structure states extends the formal definition of classic coupled DEVS without structure 
variability to the dynamic structure DEVS definition. We define a dynamic structure DEVS as follows: 

{ }( )taNNNNSdYXN dsxNNNNdyn ,,,,,,, int& λδδ=     (4) 

Notice, that coupling information as well as Select  rules are now capsuled in the set of structure states NS . The 
name of the coupled system is stored in Nd . Furthermore, a dynamic structure hybrid DEVS implies the func-

tions sxN &δ , intNδ , dNλ  and taN . The transition, output and time advance functions until now were defined for 
atomic hybrid DEVS only. These functions provide operations similar but not identical to those for atomic sys-
tems. 
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In analogy to event-oriented dynamic behaviour of classic atomic DEVS systems, dynamic structure changes in 
coupled DEVS are induced by events. Relevant events are external, internal or state events. If an external event 
occurs, it will be sent to the affected subsystems, as known from classic DEVS. If it influences the structure 
dynamics of the coupled system, its state transition function sxN &δ  is executed. After that the time advance 
function taN  is called to recalculate the time until the next internal event. State events that affect structure can 
be caused by output events of subsystems or threshold events of (i) continuous outputs of subsystems, (ii) con-
tinuous inputs of the coupled system or (iii) structure related states of the set NH . 

For state events first sxN &δ  is executed, and then taN  is called. The time advance function taN  for coupled 
DEVS also schedules events triggered by the internal structure of a coupled DEVS. The structure changes to be 
accomplished are specified with the structure state transition function intNδ . For the generation of structure re-
lated output events caused by internal events, the discrete output function dNλ  is introduced. Presented specifi-
cations for atomic and coupled DEVS models together with a new simulation concept form the DSDEVS-hybrid 
formalism. The formal approach and its application on a real engineering system are described in detail in [5]. 

3 Simulation Concept 
In dynamic structure as well as static structure hybrid DEVS formalisms and associated simulator concepts the 
continuous part of the model causes events to occur in the DEVS part. The model is simulated by a modified 
discrete event simulation engine which calls an ODE solver during simulation cycles. Structure information of 
the hybrid modular hierarchical model remains available during simulation time. Thus, the design and simulation 
of dynamic structure hybrid models becomes imaginable. Computation algorithms for modular hierarchical 
DEVS models including dynamic structure and hybrid system extensions were established in [9, 6, 1, 5]. The 
key idea is to map a model specification to interacting program objects to reflect the system components and 
their coupling relations. This means for each part of the hierarchical model a program object exists which exclu-
sively handles the dynamics, i.e. the simulation of this model part. These program objects are referred to as 
simulation objects of the computing model. On top of the hierarchically organised computing model the root 
coordinator initiates and controls the simulation cycles. Figure 1 illustrates the relations between the specified 
model and resulting program objects. The regions highlighted in grey are not part of classic DEVS formalisms, 
but extensions introduced with the DSDEVS-hybrid formalism. 
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Figure 1. Mapping elements of a model structure to simulation objects of a computing model 

Until now, problems arised for the effective calculation of continuous model parts if they are distributed over 
different program objects. Current approaches work with the Euler method and do not support the use of other 
ODE solvers. However, engineers ask for advanced ODE solvers with implicit integration methods, predic-
tor/corrector integration methods and automatic step width control to solve e.g. stiff systems. The proposed 
DSDEVS-hybrid formalism based on [5] comprises new data structures and methods which automatically gener-
ate the description of the continuous model equations and continuous state vectors of all model components in a 
closed form. This closed description is prerequisite for the efficient use of advanced ODE solver methods. To 
achieve a closed description we make use of wrapper concepts. On top of the simulation engine the root coordi-
nator is extended by the ODE-wrapper method. The ODE-wrapper method allows the closed model representa-
tion by using additional data structures. These data structures hold by the root coordinator are the vector of refer-
ences to all continuous state variables cSc and the vectors cSimObj and aSimObj filled with references to all 
atomic and coupled models. These references provide a dynamic representation of the modular hierarchical 
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model in the required closed form. In figure 1 data structures and newly introduced methods are highlighted in 
grey. Taking benefit of the wrapper concept leads to possibilities for defining interfaces to advanced ODE 
solvers which are e.g. provided by programmable scientific and technical computing environments (SCEs). 

4 Implementation of the DSDEVS-Hybrid Toolbox for Matlab 
Unlike other modelling methodologies for discrete event systems such as Petri nets or state charts, DEVS for-
malisms have not been widely accepted by engineers, although they are to be seen as powerful tools to solve 
engineering problems. To help eliminating this lack of acceptance we propose the employment of SCEs. Since 
engineers, unlike scientists, are rather familiar with the use of SCEs such as Matlab than of high level program-
ming language simulation libraries, the integration of DEVS algorithms into those environments is overdue. 
Furthermore, SCEs provide a large number of predefined advanced ODE solvers which can be involved to com-
pute the continuous parts of hybrid models. Our research aims to integrate advanced DEVS algorithms into 
SCEs and to take benefit of combination with other computing methods and toolboxes, e.g. for distributed and 
parallel computing, HLA modelling and for simulation based reactive control of discrete event systems. More-
over, a SCE provides a prototyping environment for the evolution of the DEVS approach itself. 
For Matlab a prototype implementation of dynamic structure hybrid DEVS modelling and simulation exists 
which is named DSDEVS-hybrid toolbox. Practicability of the formal approach is therewith proofed and verified. 
Major class definitions for the Matlab DSDEVS-hybrid toolbox reflecting the formal definitions for dynamic 
structure hybrid atomic and coupled DEVS models can be found in [4]. 

5 Conclusions 
The described modelling and simulation approach extends and brings together DEVS-based formalisms for dy-
namic structure and hybrid modelling. The improvements of the simulation engine by employing the ODE-
wrapper method avoids from the need to flatten the model before execution. Hence, structure information re-
mains available and dynamic structure modifications are possible. Nevertheless, the closed form required to take 
benefit of advanced ODE solvers can be provided. Thus, the proposed formalism is applicable to complex engi-
neering problems. To enlarge application field, further research will add ports and parallel extensions to 
DSDEVS-hybrid. By integrating DSDEVS-hybrid into SCEs, engineers are encouraged to break new ground in 
modelling and simulation while staying in their familiar software environment. 

Current toolbox implementation is done with previous Matlab releases, where supplied object oriented pro-
gramming features were rather poor and leaded to a complex file hierarchy. To define a new class, the program-
mer needed to establish a directory for the class, where all the M-files which included the methods for the class 
were collected. For each class method a separate M-file had to be created so that class definitions became com-
plicated and hard to follow up. Since 2008, Matlab offers enhanced features for object oriented programming. 
Therefore, reimplementation with taking benefit of these features is obvious.  
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