
TOWARDS DYNAMIC STRUCTURE HYBRID DEVS FOR
SCIENTIFIC AND TECHNICAL COMPUTING ENVIRONMENTS

C. Deatcu, T. Pawletta
Hochschule Wismar - University of Technology, Business & Design, Wismar, Germany

Corresponding Author: C. Deatcu, Hochschule Wismar, RG Computational Engineering & Automation (CEA)
PF 1210, D-23952 Wismar, Germany; christina.deatcu@hs-wismar.de

Abstract. The established Discrete Event System Specification (DEVS) offers opportunities to
comprehensively describe discrete event systems. In this paper the classic DEVS approach is ex-
tended with specifications and methods for continuous and variable structure modelling to hybrid
models with a variable modular, hierarchical structure. To let engineers benefit from these power-
ful modelling instruments, they are integrated into the well-accepted and popular scientific and
technical computing environment (SCE) Matlab. Furthermore, integration with other computing
methods provided by the chosen SCE is obvious and can be accomplished. We appreciate DEVS
based algorithms for modelling and simulation in SCEs as a complement and addition to existing
tools as Simulink, Stateflow and SimEvents for engineering tasks such as e. g. discrete event-
based control design. Moreover, a SCE provides a prototyping environment for the evolution of
the DEVS approach itself.

1 Introduction
Since Zeigler et al. introduced the Discrete Event System Specification (DEVS) in the seventies [8], many exten-
sions of the DEVS formalism where designed. This paper presents an approach for dynamic structure hybrid
DEVS, the DSDEVS-hybrid formalism, depicts its formal modelling and simulation concepts and gives an over-
view on the implementation of the DSDEVS-hybrid toolbox for Matlab.

Our modelling approach for modular hierarchical hybrid systems with structural variability at the coupled system
level is based on the work in [6, 1, 4] and classic DEVS theory [9]. A dynamic structure system in DEVS context
is a modular hierarchical system whose structure changes during simulation time. Hierarchical models are com-
posed of two system types, atomic and coupled models. Coupled models consist of other coupled models and/or
atomic models. The dynamic behaviour of a system is reflected in atomic models, while dynamic structure is
defined at the coupled system level. Dynamic structure changes are e.g. creation, deletion and exchange of mod-
els. Hybrid means that besides discrete model fractions, continuous model parts are contained, as well.

There are two ways to approach those kinds of systems, resulting from the two general worldviews. One ap-
proach starts from the continuous modelling and simulation worldview and therefore extends a continuous model
to a hybrid one. Discrete events are expressed as root-finding problems. The model is then simulated by a con-
tinuous simulation engine, i.e. it is processed by an ODE solver with discontinuity detection and localisation.
Usually, in modular hierarchical modelling and simulation environments, the model structure is flattened before
execution. Hence, hierarchical structure information is partly not available during simulation time and dynamic
structure behaviour needs to be elaborately modelled at atomic system level. It seems to be more promising to
gain access to the problem through the second worldview, the discrete event worldview. In that case a discrete
simulator rules the simulation engine and calls an ODE solver to compute continuous model fractions. Among
descriptions for discrete event system models and their simulators, we have chosen and enhanced the Discrete
Event System Specification (DEVS). In contrast to other ongoing research, e.g. integration of DEVS into the
Modelica language [7], that employs DEVS for the description of only the discrete part of hybrid models, the
described approach takes DEVS as the basis. DEVS itself and particularly its related simulator concepts are
extended with hybrid and at the same time dynamic structure features.

2 Formal Modelling Concept
An overview of the formalisms that underpin and extend DEVS theory is given by Zeigler et al. in [9]. One of
several extensions of the basic DEVS formalism is the hybrid DEVS formalism presented by Praehofer [6].
Another approach for hybrid DEVS modelling was introduced by Kofman [3, 2], who proposes quantisation of
the state variables instead of time discretisation to approximate differential equations. The suitability for dy-
namic structure modelling of this approach is not followed up in this paper.

2.1 Atomic Model Specification
Praehofer [6] defined a hybrid atomic system by the tuple

()tacfSYXA dsxcsehybrid ,,,,,,,,, int& λδδλ= (1)

2716

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

where X, Y, and S specify the set of inputs, outputs and states which may be continuous or discrete. Continuous
dynamics are mapped by the rate of change function f and the continuous output function cλ . Discrete events
are internal, external and state events. State event conditions are defined using the state event condition function

sec . External events and state events induce state transitions using the function sx&δ . Internal events activate the
discrete output function dλ and also the internal state transition function intδ . After each discrete state transition
internal events are rescheduled by the time advance function ta . Local structural changes of the continuous
dynamics can be modelled by structuring the dynamic description using logic variables inside the rate of change
function f , the state event condition function sec and the continuous output function cλ . This definition for
hybrid atomic DEVS fits for being combined with a coupled system definition for dynamic structure models.
Hybrid behaviour is defined on atomic system level, while dynamic structure is modelled at coupled system
level.

2.2 Coupled Model Specification
In order to allow dynamic structure behaviour, e.g. the creation, deletion and exchange of submodels, additional
data structures to represent this dynamic need to be established. Barros [1] proposes to add a special atomic
model called network executive to each coupled model which holds the structure information and describes the
structure dynamics. In contrast to this approach we favour the extension of the classic DEVS coupled model
definition in way that allows to hold structure information directly in the coupled model. The specification of a
classic DEVS coupled model [6, 9] is as follows:

{ }()SelectICEOCEICDdMDYXN dNN ,,,,|,,, ∈= (2)

where NX is the set of input values and NY is the set of output values. The index N stands for network model
as synonym for coupled model. D is the set of the component names, while dM represents a dynamic subsys-
tem. The property of closure under coupling, which is ensured for classic coupled DEVS, enables the representa-
tion of every coupled DEVS as an atomic DEVS. Thus, dynamic subsystems may be other coupled DEVS mod-
els or atomic DEVS models. EOCEIC, and IC define the coupling relations. The external coupling relation EIC
connects external inputs to component inputs, the external output coupling EOC connects component outputs to
external outputs and the internal coupling IC defines connections among components, i.e. component outputs
are connected to component inputs. For couplings no direct feedback loops are allowed. Finally, Select acts as a
special function to prioritise one subsystem in case of simultaneous internal events in subsystems.

To allow structure variability, some extensions of this coupled system’s definition have to be introduced. In the
context of this work, possible structural changes at the coupled system level are

• Creation,
• Cloning,
• Deletion and
• Replacement of atomic or coupled subsystems,
• Their movement between coupled systems and
• Changes of couplings between system components.

We call the actual composition of a subsystem set and its coupling relations the structure state. A dynamic struc-
ture DEVS can have different structure states Nn Ssss ∈,....,, 10 . Furthermore, structure dynamics information, e.g.
the number and kind of structure changes already achieved, needs to be stored. The set of structural variables

NH holds this information. For a dynamic structure coupled DEVS the Select function can depend on the struc-
ture state and structure dynamics information. Consequently, we define the set of sequential structure states NS
of a dynamic structure coupled DEVS as:

{ } SelectICEICEOCDdMDHS dNN ××××∈××= | (3)

This set of sequential structure states extends the formal definition of classic coupled DEVS without structure
variability to the dynamic structure DEVS definition. We define a dynamic structure DEVS as follows:

{ }()taNNNNSdYXN dsxNNNNdyn ,,,,,,, int& λδδ= (4)

Notice, that coupling information as well as Select rules are now capsuled in the set of structure states NS . The
name of the coupled system is stored in Nd . Furthermore, a dynamic structure hybrid DEVS implies the func-

tions sxN &δ , intNδ , dNλ and taN . The transition, output and time advance functions until now were defined for
atomic hybrid DEVS only. These functions provide operations similar but not identical to those for atomic sys-
tems.

2717

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

In analogy to event-oriented dynamic behaviour of classic atomic DEVS systems, dynamic structure changes in
coupled DEVS are induced by events. Relevant events are external, internal or state events. If an external event
occurs, it will be sent to the affected subsystems, as known from classic DEVS. If it influences the structure
dynamics of the coupled system, its state transition function sxN &δ is executed. After that the time advance
function taN is called to recalculate the time until the next internal event. State events that affect structure can
be caused by output events of subsystems or threshold events of (i) continuous outputs of subsystems, (ii) con-
tinuous inputs of the coupled system or (iii) structure related states of the set NH .

For state events first sxN &δ is executed, and then taN is called. The time advance function taN for coupled
DEVS also schedules events triggered by the internal structure of a coupled DEVS. The structure changes to be
accomplished are specified with the structure state transition function intNδ . For the generation of structure re-
lated output events caused by internal events, the discrete output function dNλ is introduced. Presented specifi-
cations for atomic and coupled DEVS models together with a new simulation concept form the DSDEVS-hybrid
formalism. The formal approach and its application on a real engineering system are described in detail in [5].

3 Simulation Concept
In dynamic structure as well as static structure hybrid DEVS formalisms and associated simulator concepts the
continuous part of the model causes events to occur in the DEVS part. The model is simulated by a modified
discrete event simulation engine which calls an ODE solver during simulation cycles. Structure information of
the hybrid modular hierarchical model remains available during simulation time. Thus, the design and simulation
of dynamic structure hybrid models becomes imaginable. Computation algorithms for modular hierarchical
DEVS models including dynamic structure and hybrid system extensions were established in [9, 6, 1, 5]. The
key idea is to map a model specification to interacting program objects to reflect the system components and
their coupling relations. This means for each part of the hierarchical model a program object exists which exclu-
sively handles the dynamics, i.e. the simulation of this model part. These program objects are referred to as
simulation objects of the computing model. On top of the hierarchically organised computing model the root
coordinator initiates and controls the simulation cycles. Figure 1 illustrates the relations between the specified
model and resulting program objects. The regions highlighted in grey are not part of classic DEVS formalisms,
but extensions introduced with the DSDEVS-hybrid formalism.

Atomic DEVS
A1

Atomic SimObj
A1

Coupled DEVS
C2

Coupled SimObj
C1

Coupled DEVS
C1

Atomic DEVS
A2

Atomic DEVS
A3

Model Structure Computing Model

Coupled SimObj
C2

Atomic SimObj
A2

Atomic SimObj
A3

Root Coordinator

reference vectors cSimObj, aSimObj, cSc
ODE-wrapper

cSimObj
C1
C2

aSimObj
A1
A2
A3

cSc
A1.sc1
A2.sc1
A2.sc2
A3.sc1

sc1

sc1 sc2 sc1

mapped to

reflects

modular hierarchical closed form
Figure 1. Mapping elements of a model structure to simulation objects of a computing model

Until now, problems arised for the effective calculation of continuous model parts if they are distributed over
different program objects. Current approaches work with the Euler method and do not support the use of other
ODE solvers. However, engineers ask for advanced ODE solvers with implicit integration methods, predic-
tor/corrector integration methods and automatic step width control to solve e.g. stiff systems. The proposed
DSDEVS-hybrid formalism based on [5] comprises new data structures and methods which automatically gener-
ate the description of the continuous model equations and continuous state vectors of all model components in a
closed form. This closed description is prerequisite for the efficient use of advanced ODE solver methods. To
achieve a closed description we make use of wrapper concepts. On top of the simulation engine the root coordi-
nator is extended by the ODE-wrapper method. The ODE-wrapper method allows the closed model representa-
tion by using additional data structures. These data structures hold by the root coordinator are the vector of refer-
ences to all continuous state variables cSc and the vectors cSimObj and aSimObj filled with references to all
atomic and coupled models. These references provide a dynamic representation of the modular hierarchical

2718

I. Troch, F. Breitenecker, eds. ISBN 978-3-901608-35-3

model in the required closed form. In figure 1 data structures and newly introduced methods are highlighted in
grey. Taking benefit of the wrapper concept leads to possibilities for defining interfaces to advanced ODE
solvers which are e.g. provided by programmable scientific and technical computing environments (SCEs).

4 Implementation of the DSDEVS-Hybrid Toolbox for Matlab
Unlike other modelling methodologies for discrete event systems such as Petri nets or state charts, DEVS for-
malisms have not been widely accepted by engineers, although they are to be seen as powerful tools to solve
engineering problems. To help eliminating this lack of acceptance we propose the employment of SCEs. Since
engineers, unlike scientists, are rather familiar with the use of SCEs such as Matlab than of high level program-
ming language simulation libraries, the integration of DEVS algorithms into those environments is overdue.
Furthermore, SCEs provide a large number of predefined advanced ODE solvers which can be involved to com-
pute the continuous parts of hybrid models. Our research aims to integrate advanced DEVS algorithms into
SCEs and to take benefit of combination with other computing methods and toolboxes, e.g. for distributed and
parallel computing, HLA modelling and for simulation based reactive control of discrete event systems. More-
over, a SCE provides a prototyping environment for the evolution of the DEVS approach itself.
For Matlab a prototype implementation of dynamic structure hybrid DEVS modelling and simulation exists
which is named DSDEVS-hybrid toolbox. Practicability of the formal approach is therewith proofed and verified.
Major class definitions for the Matlab DSDEVS-hybrid toolbox reflecting the formal definitions for dynamic
structure hybrid atomic and coupled DEVS models can be found in [4].

5 Conclusions
The described modelling and simulation approach extends and brings together DEVS-based formalisms for dy-
namic structure and hybrid modelling. The improvements of the simulation engine by employing the ODE-
wrapper method avoids from the need to flatten the model before execution. Hence, structure information re-
mains available and dynamic structure modifications are possible. Nevertheless, the closed form required to take
benefit of advanced ODE solvers can be provided. Thus, the proposed formalism is applicable to complex engi-
neering problems. To enlarge application field, further research will add ports and parallel extensions to
DSDEVS-hybrid. By integrating DSDEVS-hybrid into SCEs, engineers are encouraged to break new ground in
modelling and simulation while staying in their familiar software environment.

Current toolbox implementation is done with previous Matlab releases, where supplied object oriented pro-
gramming features were rather poor and leaded to a complex file hierarchy. To define a new class, the program-
mer needed to establish a directory for the class, where all the M-files which included the methods for the class
were collected. For each class method a separate M-file had to be created so that class definitions became com-
plicated and hard to follow up. Since 2008, Matlab offers enhanced features for object oriented programming.
Therefore, reimplementation with taking benefit of these features is obvious.

6 References
[1] Barros, F. J.: The Dynamic Structure Discrete Event System Specification Formalism. Transactions of the

SCS International, 1996, 13(1), 35 – 46
[2] Cellier, F. E. and Kofman, E.: Continuous System Simulation. Springer Pub., 2006
[3] Kofman, E.: Discrete Event Simulation of Hybrid Systems. SIAM Journal on Scientific Computing, 2004,

25(5), 1771-1797
[4] Pawletta, T., Deatcu, C., Pawletta, S., Hagendorf, O. and Colquhoun, G.: DEVS-Based Modeling and Simu-

lation in Scientific and Technical Computing Environments.
In: Proceedings of SpringSim 2006 (DEVS Symposium), Huntsville, AL, USA, 2006, 151 - 158

[5] Pawletta, T., Lampe, B., Pawletta, S. and Drewelow, W.: A DEVS Based Approach for Modeling and Simu-
lation of Hybrid Variable Structure Systems. Lecture Notes in Control and Information Science
(Eds.:S. Engel et.al.), Springer Pub., 2002, Volume 279, 107 – 130

[6] Praehofer, H.: System Theoretic Foundations for Combined Discrete-Continuous System Simulation.
PhD thesis, VWGÖ, Vienna, 1992

[7] Sanz, V., Urquia, A. and Dormido, S.: Introducing Messages in Modelica for Facilitating Discrete-Event
System Modeling.
In: Proceedings of the 2nd International Workshop on Equation-Based Object-Oriented Languages and
Tools, Paphos, Cyprus, 2008, 83 - 93

[8] Zeigler, B. P., Kim, T. G. and Praehofer, H.: Theory of Modeling and Simulation, 1st Edition.
Academic Press, 1976.

[9] Zeigler, B. P., Kim, T. G. and Praehofer, H.: Theory of Modeling and Simulation, 2nd Edition.
Academic Press, 2000.

2719

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume

