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Abstract. Quaternionic analysis has become an important tool in the analysis of partial differential
equations and their application in mathematical physics and engineering. The main goal of my talk is to
offer a quaternionic modelling and solution theory. This contribution can be applied for a wide range of
classes of problems in mathematical physics under given initial value and boundary value conditions.
In this short article we have to restrict our studies to one example.

1 Introduction
Quaternionic analyis and also Clifford analysis have in recent years become increasingly important tools in the
analysis of partial differential equations. In particular fluid flow problems, Maxwell equations and equations in
3D-elasticity has been considered. The talk reflects the meaning and the importance of quaternionic operator
methods for the treatment of boundary value problems and initial boundary value problems of stationary and
non-stationary linear and some non-linear equations in fluid dynamics. We will give a survey of problems which
can be successfully dealt with quaternionic methods. The scope of these problems reachs from classical Navier–
Stokes equations for Newtonian fluids up to viscous fluids under the influence of temperature or field induction
and problems in elasticity and electro-magnetism.

A corresponding discrete calculus exists and is worked out in ([2]). The technique is demonstrated for the stationary
Navier–Stokes equation with heat conduction.In the case of initial boundary value problems a time-discretization
method is used. Aside of problems which are based on Navier–Stokes equations (Benard’s problem, shallow water
wave equations etc. ) also fluid flow problems on the sphere (forecasting equations) and through porous media
(Galpern-Sobolev equations) are studied (cf. ([4])) We will give a little insight in this theory by consideration of
Benard’s problem. .

The essential new element in this approach is the use of a quaternionic operator calculus, which is generated by
three operators: an algebraical integral operator the so called Teodorescu transform, an algebraical differential
operator the so called generalized Dirac operator and an initial-value operator, which is identified with a Cauchy–
Fueter operator.

2 Quaternionic Operator Calculus
2.1 Quaternions and quaternionic valued functions

Let H be the algebra of real quaternions and a ∈ H, then a = ∑3
k=0 αkek. Further let be e2

k = −e0;e1e2 = −e2e1 =
e3,e2e3 = −e3e2 = e1,e3e1 = −e1e3 = e2. Natural operations of addition and multiplication in H turn H to a
skew-field. Quaternionic conjugation is given by

e0 = e0,ek = −ek (k = 1,2,3), a = a0 −
3

∑
k=1

αkek = a0 −a, (1)

aa = a = |a|2R4 =: |a|2H, (2)

a−1 :=
1

|a|2 a, ab = ba. (3)

As a structure quternions were discovered by Sir R. W. Hamilton in 1843. Already 100 years earlier L. Euler used
such units in his theory of kinematics. A similar multiplication rule was also found in the diary of C.F. Gauss
(1823).

We denote by H(C) the set of quaternions with complex coefficients, i.e.

a =
3

∑
k=0

αkek (αk ∈ C). (4)
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For k = 0,1,2,3 we have the commutator relation iek = eki. Any complex quaternion a has the decomposition
a = a1 + ia2 (a j ∈ H) and therefore also the denotation CH can be used. We have three possible conjugations:
aC := a1 − ia2,, aH := a1 + ia2 and aCH := a1 − ia2.

Let G be a bounded domain in R3 and ∂G := Γ. Further let p ≥ 1 then Sobolev spaces W k
p (G) k ∈ N as well as

Sobolev-Slobodetzkij spaces W k
p (Γ) k = [k] + λ , λ ∈ (0,1) for quaternion-valued functions are componentwise

defined.

2.2 Quaternionic operator trinity

Let X = W k
p (G),Y = W k+1

p (G),Z = W k−(1/p)+1
p (Γ);k = 0,1,2, ...;1 < p < ∞. We introduce the following linear

operators:

1. Dirac operator with zero-mass:

(Diau)(x) := (∂1e1 + ...+∂3e3 + iae0)u(x) : Y → X ,

2. We consider the kernel function

ea(x) := −
(

ia
2π

)3/2

[ fia(|x|)ω −gia(|x|)] and (5)

fia(t) := t−1/2K3/2(iat) gia(t) := t−1/2K1/2(iat), (6)

where ω = x/|x| ∈ S2 (unit sphere in R3) and K(z) (z ∈ C) denotes MacDonald’s function. The function ea is a
fundamental solution of Dia. Let u ∈C(G). The weakly singular integral operator

(Tiau)(x) :=
∫
G

ea(y− x)u(y)dy, x ∈ G (7)

is called the generalized Teodorescu transform. Notice that Tia is a right inverse to Dia. Therefore, for u ∈C(G)
we have (DiaTiau)(x) = u(x) x ∈ G .

3. Let u ∈C1(G)∩C(G). Then the operator

(Fiau)(x) :=
∫
Γ

ea(x− y)n(y)u(y)dΓy x ∈ G∪ (R3 \G) (8)

is called Cauchy–Fueter operator. Here n(y) denotes the unit vector of the outward pointing normal at the point y.
It is easy to see that (DiaFiau)(x) = 0 in G∪R3 \G. Furthermore, it holds a formula of Borel–Pompeiu type:

(Fiau)(x)+(TiaDiau)(x) = u(x) in G. (9)

This formula can be extended by continuity to functions u ∈ W 1
2 (G) and their traces in W

1
2

2 (Γ), respectively. For
more detail have a look in [1]. The choice of the function a = a(t) depends on the problem.

2.3 Bergman–Hodge decomposition

Further, let ∂ := ∂0 −D. This operator is also called Cauchy-Fueter operator. Functions of the class (ker ∂ )(G)∩
C1(G) are called ∂ -holomorphic or simply holomorphic.

In ([2]) is proved: The set ker∂ (G)∩W k
p (G) is closed in W k

p (G) and called the Bergman space.

Proof. For the proof we only need the mean value formula for holomorphic fuctions and Weierstrass’ theorem for
sequences of holomorphic functions. The proof is similar to [2]. #

In [2] we obtained the statement: Let ∂ = ∂0 +D with D = ∂1e1 +∂2e2 +∂3e3, G ⊂ R4. The Hilbert space L2(G)
submits the orthogonal decomposition:

L2(G) = (ker∂ ∩L2)(G)⊕∂
◦

W 1
2 (G) (10)

with respect to the inner product
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(u,v)2 =
∫
G

u(y)v(y)dGy. (11)

The generalized projection of Bergman type permits an explicit representation within our calculus. It holds that

u ∈ imQ if and only if trΓTu = 0, (12)

where

P := FΓ(trΓT F)−1trΓT, Q := I −P.

The definition of the operator P is justified by the validity of the following statement:

The operator

trΓT FΓ : im PΓ∩W 1/2
2 (Γ) → im QΓ∩W 2/3

2 (Γ) (13)

is an isomorphism, where PΓ and QΓ denote the corresponding Plemelj projections.

For more detail have a look in [1].

3 Stationary Boussinesq problem with real quaternionic methods
3.1 Boussinesq equation in quaternionic formulation

We will now prescind from the physical interpretation of the equations. Here, b1,b2,b3,b4 are positive constants,
u denotes an unknown vector-valued function and w an unknown scalar-valued function. Our problem then reads:

−Δu+b1(u ·∇)u+b2∇ p+ f (u)−b3(e3)w = F(x), (14)

div u = 0, (15)

−Δw+b4(u ·∇)w = g. (16)

In quaternionic notation the problem can be described as follows: Let u = u0 + u. Then we have to add the
trivial boundary value problem Δu0 = 0 in G and u0 = 0 on Γ. Moreover we identify the scalar function p = p(x)
with (p(x),0,0,0)T and we put

M(u) := b1(u ·∇)u−F(x)+ f (u).

Problem (??)then has the formulation:

D2u+M(u)+b2∇p−b3e3w = 0 in G, (17)

ScDu = 0 in G, (18)

D2w−b4Sc(uD)w = g in G, (19)

u = 0 on Γ, (20)

w = 0 on Γ. (21)

3.2 Quaternionic operator-integral equations

Using Borel-Pompeiu’s formula we obtain after application of the operator T QT from the right

u = −T QT [M(u)+b3e3w]−b2T Qp (22)

0 = Sc{b1QT [M(u)+b3e3w]+b2Qp} (23)

w = b4T QT Sc (uDw)+T QT g. (24)

Notice that for trΓT Qu = 0 the boundary conditions for u and w are fulfilled. The choice of the function a = a(t)
depends on the problem, in our case a(t) = 0, for simplicity. By the help of a general trace operator Plemelj
type formulae are deduced. In a pair of Hardy type spaces a generalized potential operator is an isomorphism
in the scale of (real and complex) quaternionic Sobolev-Slobodetzki spaces. With the aid of so called Bergman
type projections operator representations of solutions of the corresponding problem are obtained. Numerical
considerations are worked out. Convergence and error estimates could be shown.

This approach has the advandage that modelling, solution theory and numerical treatment can be studied from a
unique point of view. An additional algebraical structure can be useful for simulation methods.
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