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Abstract. It is presented a new approach for dry friction modeling under conditions of combined 
kinematics. The main distinguish feature of this approach is building of friction models which are 
suitable for using in differential equations of motion. Coupled models of sliding and whirling fric-
tion for axially symmetric areas of contact and coupled models of sliding, whirling and rolling 
friction for circle areas of contact are represented in this article. Under the proposed models of 
friction are understudied the interrelations between friction force components, torques and veloci-
ties. The models involves the replacement of exact integral expressions for the net vector and 
torque of the dry friction forces, formed with the assumption that Coulomb's friction law is valid at 
each point of the contact area, by appropriate Pade approximations. This approach substantially 
simplifies the combined dry friction modeling, making the calculation of double integrals over the 
contact area unnecessary. Unlike available models, the model based on the Pade approximations 
enables one to account adequately for the relationship between force and kinematical characteris-
tics over the entire range of angular and linear velocities. The approximate model preserves all 
properties of the model based on the exact integral expressions and correctly describes the behav-
iour of the net vector and torque of the friction forces and their first derivatives at zero and infin-
ity. Moreover, one does not have even to calculate the integrals to determine the coefficients of the 
Pade approximation. The corresponded coefficients can be identified from experiments. Conse-
quently, the models based on Pade approximations may be considered as reological models of 
combined dry friction. One of the main advantages of proposed models is obviating a necessity to 
solve the problem of the theory of elasticity and exactly define the boundaries of area of contact.  

1 Introduction 
There are many works in the scientific literature devoted to the dry friction, classification of that at the depend-
ence on the aims of investigations can be found at [1]. At the most of these publications authors are using the 
Coulomb model of dry friction supposed that the friction force at the point of contact is direct opposite the rela-
tive velocities of sliding and it is not depend on the module of velocity. However, there are many experimental 
facts about the violation of this law at case when the rubbed bodies are participated simultaneously in the transla-
tional, whirling and rolling motions. Following the experimental results from the tyre manufactory in the 
work [2] was established the empiric dependence of the distribution of normal contact stresses at area of contact 
from the velocity of rolling. At the corresponded this dependence the influence of whirling is shifting of the 
symmetric form of contact stresses distribution in the direction of rolling. This shift is good approximated by the 
liner function with one coefficient depended on the direction and value of the rolling velocity. Asymmetry at 
distribution of the normal contact stresses at the case of circle areas of contact cause the appearance of the com-
ponent of the friction force directed on normal to the trajectory of motion that leads to drift of the trajectory of 
the heavy boil rolling on the rubbed plane from the straight line [3]. 

2 Coupled models of the sliding, whirling and rolling friction for circle areas of con-
tact. 

Construction of combined model of friction of rolling and sliding is performed at he supposition the validities of 
the Coulomb law at the differential form for the small element of area dS  inside of spot of contact, in corre-
spondence with the differentials of the net vector  and torque  of the friction forces relatively the center 
of contact circle are defined by the formulas 
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where f  - coefficient of friction, ( , )x y�r  - radius vector of the elementary square inside of spot of con-
tact (���.1), ��  - distribution of normal contact stresses,  - linear velocity of sliding and v E  - angle velocity of 
whirling of contact spot center.  
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Figure 1. 

 
Asymmetry at the symmetric distribution of normal contact stresses ( , )x y� , arisen at the non zero velocity of 
rolling , in the rectangular coordinate system {r4 }xOy , axis x  of which is directed alone the velocity of slid-
ing (fig.1) is described by the following dependence: 
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where  - radius of contact circle, R *  - axis of rectangular coordinate system directed perpendicularly to the 
instantaneous velocity of rolling  (fig. 2), and  - dimensionless coefficient the sign of that is dependent on 
the direction of motion  

r4 rk

 

 
Figure 2. 

 
Connection of the coordinate systems { }xOy  and { }O* ;  are given by rotate transform on the angle [0, 2]� ,8  
that is defined from the values of projections ,x y4 4  of the instantaneous velocity of rolling  on the axis r4 x  
and  (fig. 2): y
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Substitution of expressions (3) to the formula (2) gives dependence of distribution of the normal contact stresses 
on the value and direction of rolling velocity: 
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� �                         (4) 

 
The typical behavior of function (4) for different values of the rolling coefficient  at the supposition that at the 
absence of rolling distribution of the normal contact stresses (solid line) is described by Hertz low 
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is presented at fig.3 by the dash lines. 
 

 
Figure 3. 

 
Integration of the expressions (1) on the spot contact taking in account the formula (4) gives the exact integral 
model of combined friction of sliding and rolling, that in dimensionless variables: ˆx xR� , ˆy yR� , 

2ˆ ˆ ˆ ˆ ˆ( , ) ( , )x y x y N R� ��  in supposition that distribution of contact stress at the absence of rolling has central 
symmetry ( , ) ( )x y r� �� , has in polar coordinate system with origin at the center of contact circle 

cos , sin , [0,1], [0,2 ]x r y r r: : :� � 8 8 ,  following form 
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where F�  and Fe  are the components of the friction force directed correspondently on the tangent and normal to 
the trajectory of motion, and CM  is the torque of whirling respectively the center of circle area directed perpen-
dicularly to plane of whirling. 
Transition at the model (6) from the consideration of the connection of the friction of rolling and sliding in term 
of projection x4  and  of the velocity of rolling to the its absolute value y4 r4  and to the angle �  between 
direction of rolling and sliding gives the equivalent form of this model 

1923

Proceedings MATHMOD 09 Vienna - Full Papers CD Volume



� 	

� 	

2 1

2 2 2
0 0

2 1 3 2

2 2 2
0 0

22 1

2 2 2
0 0

( sin ) ( ) 1 sin sin

2 sin

( )cos cos

2 sin

( sin ) ( ) 1 sin sin

2 sin

r

r

r
C

v ur r r k r
F fN drd

u r v uvr

ur rF fNk drd
u r v uvr

ur vr r r k r
M fRN drd

u r v uvr

,

,

,

: � : �
:

:

� : � :
:

: � : �
:

:

e

� �
�

� �

�
� �

� �
�

� �

� �

� �

� �

�

        (7) 

 
One of the distinguish feature of model (6)-(7) is appearance of none zero component of friction force normally 
directed to the trajectory of motion. At the presence of combined motion of rolling and sliding the net vector of 
friction forces is not opposite directed to the vector of sliding velocity. 
At supposition that the distribution of the contact stresses ( , )x y��  is play role of density the violation at its cen-
tral symmetry defined by the formula (4) leads to shift of the gravity center of contact circle respectively the 
geometric centre in the direction of whirling (along axe *  (fig.2)) on value s , the projections of which to 
axes x  and are defined by the formulas: y

1
3

0

cos , sin ,

( )

y x
x r r y r r

r r

s sk sk s sk sk

s R r r dr

� �

, �

4 4
� � � � � �

4 4

� �
         (8) 

The shift of the center of gravity of contact spot, defined by formulas (8) leads to appearance of torque of roll-
ing  parallelly directed to the plane of sliding the projections of that on the directions of the tangent rM M �  and 
normal Me  to the trajectory of motion are defined by expression: 
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Thus the net torque of friction forces at rectangular coordinate system one axis of that is directed on the tangent 
of trajectory of motion is 
     � 	, , CM M Me� �M �                       (10) 

Expressions (6)-(7) for torque CM  and force components ,F Fe�  as function of  have several significant 
properties detailed investigated in [3]. These properties allow simplifying the friction modeling with the aid of 
replacing of the exact integral models (6)-(7) by the approximate models based on the Pade approximations of 
corresponded order. This approach permits to escape the integration over the spot of contact. In corresponded 
with results of the work [3] the combined model friction rolling and sliding of the first order based on the partial-
linear Pade approximation has form: 
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The model of the first order (11) is sufficient for the dynamics investigation, but for more precise qualitative 
analysis the model of the second order is required.  This model not only good approximates the exact integral 
models (6)-(7) but conserves all their properties such as behavior of these functions and their first derivatives at 
zero and infinity. 
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The comparison of the integral model (solid line) and models of the first (11) (dash-dot line) and the sec-
ond (12) (dash line) for the Hertz distribution of contact stresses (5) as function of parameter k v u�  is pre-
sented on the fig.4 for friction force components and on the fig.5 for torque: 
 
 

  
 
 

     
 

Figure 4. 
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Figure 5. 
 
Models (11)-(12) of combined friction of rolling and sliding based on the Pade approximations can be consid-
ered as reological models, because there are no required in solving of real problems to calculate the double inte-
grals, defined the coefficients of Pade approximations. These coefficients can be defined from the experiments. 

3 Dynamics of heavy ball on the rubbed plane 
Using combined models of friction of rolling and sliding enable correctly describe the deviation of the trajectory 
of the ball mass center from the straightline. Practically in all previous publication of the different authors this 
effect had been described under additional suppositions on motion character hardly realized on the practice. 
The equations of motion of the heavy ball of the radius  and mass  in the projections on the axes of the 
fixed coordinate system {  (fig.6) has form 

bR bm
}

)b

OXYZ
2, , ( 2 / 5b bJ m J m�� = M r = F� �� R                       (13) 

 

 
 

Figure 6. 
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Connection of components of the net vector and torque at this coordinate systems with their components defined 
at the section 2 are given by the formulas 
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where components ,F Fe� of friction force and torque CM  are defined on the base of model of combined friction 
of rolling and sliding of the first order (11), coefficients of which at the supposition that distribution of contact 
stresses is describe by the Hertz law (5) are 
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Velocity of point of ball coincident with the center of spot of contact 
 

        ,x b y y b xv x R v y RE E� � � �� �                       (15) 
 
is convenient to express in polar coordinates [3]  
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Thus, the full equations system of dynamics of the heavy ball rolling with friction on rubbed plane is  
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From the last equations of this system immediately follows conclusion about the deviation of the trajectory of 
the ball mass center from the straightline. The numeric solutions of the initial problem  
 

(0) 1.0, (0) 3.0, (0) (0) (0) (0) (0) 0x yv u x y 7� � � � � 4 � 4 �  
 
for the full system got with the aid of Runge-Kutta method of the fourth order is presented on the fig.7 -8. 
Figure 7 demonstrates the real trajectory of the ball on the plane at coordinates { , }x y . 
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Figure 7. 

Figure 8 illustrate numerically got result that the velocities of sliding  and whirling u  convert to zero simulta-

neously.  

v

 

 
Figure 8. 
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