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Abstract. In the framework of microbiology, Individual-based Models are discrete models in 
which the main entities are microbes. Their use in simulations as ‘virtual experiments’ to predict 
the evolution of populations under specific conditions requires accurate setting of the parameters 
involved. We adapted and tested two optimization methods for Individual-based Model parameter 
estimation: the Nelder-Mead Threshold Accepting (NMTA) and the NEWUOA. These methods 
presented no convergence problems, and the best results in terms of time expenditure were derived 
with the latter. 

1 Introduction 
The aim of predictive microbiology is to predict the evolution of a microbial population under specific 
conditions once the initial state has been determined. In order to build proper mathematical models that describe 
the systems under study, it is essential to accurately define their variables and precisely delimit the values of 
their parameters. 

In the framework of microbiology, Individual-based Models (IbMs) are discrete models in which the main 
entities are microbes. These models define rules for the individual cells’ behaviour (e.g., uptake, metabolism and 
cell cycle, among others) and for the processes that take place in the environment (e.g., nutrient diffusion and 
medium heating, among others). Once they are implemented in a computer, simulations show the evolution of an 
initial population following individual and local rules. Two examples of IbM simulations that have provided 
various and interesting results in microbiology are BacSim [4] and INDISIM [3]. 

The use of IbM simulations as ‘virtual experiments’ to predict the evolution of a population under specific 
conditions requires an accurate setting of the parameters involved. Most of them are related to individual 
characteristics of the microbes (e.g., individual mean growth rate, individual mean uptake rate and individual 
mean mass to initiate the reproduction cycle, among others). Thus, they are difficult (if not impossible) to assess 
experimentally. They must be indirectly estimated by fitting the output simulations with the related experimental 
measurements at the population scale, by means of an objective function that assesses this likelihood. Several 
methods for parameter estimation have been developed within the framework of continuous modelling. 
However, they are not usable with IbM because they are generally based on gradient methods, which are not 
applicable in IbM because of their discrete nature. 

The classic method for estimating the parameters of an Individual-based Model is the grid search, which 
involves great time expenditure. In this study we adapted and tested two optimization methods for an IbM 
parameter estimation: the Nelder-Mead Threshold Accepting (NMTA) [2,5] and the NEWUOA [6]. Both of 
them were implemented in Matlab and used to estimate one, two and three parameters of BacSim and INDISIM, 
providing similar results. We present here the results of INDISIM parameter estimation: (i) the one-parameter 
estimation (mean individual uptake rate, umax) was performed by means of a grid search, NMTA method and 
NEWUOA; (ii) the two-parameter estimation (umax and mean individual biomass to initiate the reproduction 
cycle) was performed by means of a grid search and the NEWUOA method; and (iii) the three-parameter 
estimation (umax and two parameters of the initial biomass distribution) was tested with NEWUOA.  

2 Estimating INDISIM parameters 
To estimate the parameters of an IbM, some steps must be taken [7]. First of all, it is necessary to set the values 
that can be deduced from the literature or induced from experimental data, which are the most arguable sources. 
The  number of parameters to be estimated should be as low as possible to reduce the parameterization time. So 
this step concludes with the identification of the parameters to be estimated. It is also useful to know some 
thresholds for these values or at least their order of magnitude. Since we are talking about IbM models of 
microbiological systems, the parameters to be estimated must be biological or physical values with their units. 
Therefore, the literature should allow a delimitation of their possible values. In this study we performed three 
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different trials estimating: (i) one parameter (mean individual glucose uptake rate, umax); (ii) two parameters (umax 
and mean individual biomass to initiate the reproduction cycle); and (iii) three parameters (umax and two 
parameters of the initial biomass distribution).  

To carry out the estimation of the chosen parameters, experimental information about the system is necessary. 
That is, the logical estimation process is based on the fitting of the unknown parameters so that simulation 
results are as similar as possible to an experimental dataset. So, the second step is the choice of the experimental 
dataset (or datasets) to be used. The IbM simulations must be adapted to generate results that are comparable to 
these data. In this study, the experimental dataset was taken from Bernaerts [1]. It corresponds to Escherichia 
coli K12 MG1655 growth in Brain Heart Infusion broth at 27.5ºC. 

In a third step, a numerical method to evaluate the soundness of the simulations regarding the experimental data 
is needed. This numerical evaluation is usually an objective function that decreases with the soundness of the 
fitting. We used the mean square error (MSE) as objective function [8]. 

Finally, a method to perform the search for the lowest value of the objective function in a systematic manner is 
needed. We used three different methods: the classic grid search, the Nelder-Mead Threshold Accepting and the 
NEWUOA. 

2.1 Grid search 
In a grid search, each parameter is discretized in a certain interval where its best value is assumed to lie, and the 
resulting grid (different combinations of parameters to be evaluated) is explored to find the best point. This 
method involves great time expenditure, since it requires an enormous number of simulations.  

2.2 Nelder-Mead Threshold Accepting (NMTA) 
The Nelder-Mead method [5] is one of the most used algorithms for nonlinear unconstrained optimization. It is a 
direct search method, since it does not use derivatives. The basic unit in this method is the simplex: a geometric 
figure in an n-dimensional space that is a convex hull of n+1 vertexes, with each vertex representing a certain 
combination of the n parameters to be estimated. The value of the objective function is assessed in each simplex 
vertex, and a new simplex that is closer to the objective function is constructed at each step. The rules for 
constructing each new simplex are based on a set of geometric operations. The value of the objective function 
determines whether new vertexes are accepted or rejected. If a new vertex is accepted, a new simplex is 
constructed by rejecting the worst existing vertex, always according to the objective function values. 

The Threshold Accepting algorithm [2] performs a local search that escapes local minima by means of accepting 
solutions that are not worse than the current one by more than a given threshold, 4. It was incorporated into the 
Nelder-Mead method in order to escape the possible local minima of the objective function. 

2.3 NEWUOA 

The NEWUOA algorithm [6] seeks the minimum of an objective function, )(xF
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3 Results 

3.1 One-parameter estimation 
The one-parameter estimation (umax) was performed with the three methods, providing similar results. The best 
estimates were -1-1

max hgmol 0.0126=u  with the grid search (intervals’ width of 0.00015 mol·g-1·h-1), 
-1-1

max hgmol 0.0124=u  with the NMTA and -1-1
max hgmol 0.0127=u  with the NEWUOA. Thus, they 

were similar using any of the presented methods, and the quality of the results was comparable. The classical 
grid search yielded a lot of information about the MSE behaviour in the studied interval, but was slow and 
tedious. NMTA and NEWUOA showed good convergence for the studied case, although it was necessary to 
accurately delimit the interval. The NMTA optimization processes lasted 15 times longer than NEWUOA runs. 
Therefore, the fastest method by far was NEWUOA. Figure 1 shows the grid search and several runs of the 
NEWUOA estimation. 
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Figure 1. The MSE for a grid search of 20 umax values, for 149 runs executed with non-overlapping random number 
sequences (left). 20 independent rounds of NEWUOA optimization method for estimating the umax (right): blue full 

rhombuses are the randomly chosen initial points, and red open circles are the best estimate for each run; the mean of the 20 
best estimates is shown with a dashed line. 

3.2 Two-parameter estimation 
The parameters chosen to be estimated were the mass at division, md, and the mean maximum uptake rate, umax. 
According to the above-mentioned results regarding the convergence and time expenditure of the optimization 
methods, we only performed a grid search and several NEWUOA optimization runs. The obtained best estimates 
for these parameters were -1-1

max hgmol 0.0124=u  and pgmd 40.0�  with the grid search (Figure 2), and  
-1-1

max hgmol 0.0125=u  and pgmd 47.0�  with the NEWUOA (Figure 3). These best md estimates were 
similar to the value used in Section 3.1 (0.43 pg). The two-parameter NEWUOA optimization processes lasted 
just 1.2 times longer than the one-parameter NEWUOA runs, and no convergence problems were detected. 

 
Figure 2. Grid search for mass at division (md) and maximum uptake rate (umax). 

 
Figure 3. NEWUOA results for optimizing (a) maximum uptake rate (umax) and (b) mass at division (md). Full circles are the 

initial points, and open circles are the best estimates for each run. The dashed line indicates the mean value of the best 
estimates. 

3.3 Three-parameter estimation 
A third test was carried out to evaluate the usefulness of the NEWUOA method for the estimation of more than 
one parameter. A three-parameter evaluation was performed, and chosen parameters were the umax again, and the 
two Weibull parameters for setting the inoculum biomass distribution (A and B). The md was taken from the 
bibliography. The mean of the 40 independent NEWUOA runs resulted in the best estimates 

-1-1
max hgmol  0.0124=u , pgA 10.0�  and 99.2�B . The convergence was acceptable for umax and A, but it 

was not as good for B due to a lack of information in the experimental data. The three-parameter optimization 
processes lasted between 1.2 and 2.4 times longer than the one-parameter NEWUOA runs.  
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Figure 4. NEWUOA results for optimizing (a) the maximum uptake rate (umax), (b) the Weibull distribution constant for the 

inoculum A and (c) the Weibull distribution constant for the inoculum B. Full rhombuses are the initial points, and open 
circles are the best estimates for each run. The dashed line indicates the mean value of the best estimates. 

4 Conclusions 
Two methods were adapted and tested for IbM parameter estimation. The NMTA method, which was 
considerably faster than the classic grid search, showed a good convergence for one parameter but some 
difficulties for the programming. NEWUOA was proved to be a useful tool for IbM parameterization, although it 
required a minimum knowledge of the parameters to be estimated in order to set the trust region radius. It was 
the fastest method, and the results had sufficient precision. For further and better applications of the NEWUOA 
method to IbM parameter estimation, the objective function should be slightly modified to incorporate a penalty 
function that avoids the algorithm of leaving the real trust region.  
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