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Abstract. This paper studies the problem of synchronization for a general class of neural networks

with time-varying delays and stochastic perturbation. By defining Lyapunov functionals, a new delay-

dependent stability criterion for the synchronization is established in terms of linear matrix inequality

(LMI). A numerical example is given to illustrate the proposed method.

1 Introduction
During the last decade, neural networks are widely studied, because of their immense potentials of application

prospective in a variety of areas such as signal processing, patten recognition, associative memory and combi-

natorial optimization [1]. Since significant time delays are ubiquitous both in neural processing and in signal

transmission, it is necessary to introduce delays into communication channels which lead to delayed neural net-

works (DCNNs) model. Recently, it has been revealed that if neural network’s parameters and time delays are

appropriately chosen, the DCNNs can exhibit some complicated dynamics and even chaotic behaviors. Hence, it

has attracted many scholars to study the synchronization of chaotic DCNNs [2]. In real nervous systems, synap-

tic transmission is a noisy process brought on by random fluctuations from the release of neurotransmitters [3].

Therefore, it is of practical importance to study the stochastic effects on the stability property of delayed neural

networks [4]. In Li and Cao [5], the synchronization problem for DCNNs with stochastic perturbation has been

investigated. On the other hand, due to the complicated dynamic properties of the neural cells in the real world,

the existing neural network models in many cases cannot characterize the properties of a neural reaction process

precisely. It is natural and important that systems will contain some information about the derivative of the past

state to further describe and model the dynamics for such complex neural reactions [6].

This paper considers a general class of neural networks with stochastic perturbation, i.e. neutral-type neutral net-

work. To date, the synchronization problem for neural networks of neutral type with stochastic perturbation has

not been investigated fully. By Lyapunov method and LMI framework, a stability criterion for synchronization

between two neural networks is obtained in the paper.

Notation: For symmetric matrices X and Y , the notation X >Y (respectively, X ≥Y ) means that the matrix X−Y is

positive definite, (respectively, nonnegative). diag{· · ·} denotes the block diagonal matrix. � represents symmetric

part of a given matrix. The notation ρ(A) denotes the spectral radius of A. For h > 0, C ([−h,0],Rn) means the fam-

ily of continuous functions φ from [−h,0] to Rn with the norm ‖φ‖= sup−h≤s≤0 |φ(s)|. Let (Ω,F ,{Ft}t≥0,P) be

a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and

F0 contains all P-pull sets). Lp
F0

([−h,0],Rn) the family of all F0 - measurable C ([−h,0],Rn)-valued random

variables ξ = {ξ (θ) : −h ≤ θ ≤ 0} such that sup−h≤θ≤0 E|ξ (θ)|p < ∞ where E{·} stands for the mathematical

expectation operator with respect to the given probability measure P . Denote by C 2,1(Rn×R+,R+) the family

of all nonnegative functions V (x, t) on Rn×R+ which are continuously twice differentiable in x and differentiable

in t .

2 Problem Statements
Consider a class of neural networks with time-varying delays

d[x(t)−Cx(t−h(t))] =
[
−Ax(t)+W0 f (x(t))+W1 f (x(t−h(t)))+ J

]
dt, (1)

where x(t) = [x1(t),x2(t), ...,xn(t)]T ∈Rn is the neuron state vector, n denotes the number of neurons in a neural

network, f (x(t)) = [ f1(x1(t)), ..., fn(xn(t))]T ∈Rn denotes the neuron activation function, A = diag{ai} is a posi-

tive diagonal matrix, W0 = (w0
i j)n×n, W1 = (w1

i j)n×n, and C = (ci j)n×n are the interconnection matrices representing

the weight coefficients of the neurons, J = [J1,J2, ...,Jn]
T

means a constant input vector, and h(t) is time-varying

delay.

In this paper, it is assumed that 0≤ h(t)≤ h̄ and ḣ(t)≤ hd < 1, and the matrix C satisfies ρ(C) < 1.

2692

I. Troch, F. Breitenecker, eds.      ISBN 978-3-901608-35-3



The activation functions, fi(xi(t)), i = 1,2, ...,n, are assumed to be nondecreasing, bounded and globally Lipschitz;

that is,

| f j(ξ j)| ≤ |l j(ξ j)|, ∀ ξ j �= 0, j = 1, ...,n, (2)

where li is known real constant.

For synchronization problem, let us take system (1) as a drive network, then, the following response network is

constructed:

d[y(t)−Cy(t−h(t))] =
[
−Ay(t)+W0 f (y(t))+W1 f (y(t−h(t)))

+ J +u(t)
]
dt +[H0(y(t)− x(t))+H1(y(t−h(t))− x(t−h(t))]dω(t), (3)

where y(t) = [y1(t),y2(t), ...,yn(t)]T ∈ Rn is the state vector of response network, u(t) is the control input for

achieving synchronization, H0 and H1 are known constant matrices with appropriate dimensions, ω(t) is a scalar

Wiener Process (Brownian Motion) on (Ω,F ,{Ft}t≥0,P) which satisfies E{dω(t)} = 0 and E{dω2(t)} = dt.
This type of stochastic perturbation can be regarded as a result from the occurrence of external random fluctuation

and other probabilistic causes.

By defining the error signal as e(t) = y(t)− x(t), the error dynamic equation is:

d[e(t)−Ce(t−h(t))] =
[
−Ae(t)+W0g(e(t))+W1g(e(t−h(t)))+u(t)

]
dt

+[H0e(t)+H1e(t−h(t))]dω(t), (4)

where g(e(t)) = f (x(t)+ e(t))− f (x(t)).
In this paper, the following feedback controller for synchronization between drive network (1) and response net-

work (3) is proposed:

u(t) = Ke(t), K = diag{k1,k2, · · · ,kn}. (5)

The following definition will be used in deriving main result.

Definition 1. For the stochastic neural networks (4) and every φ ∈ L2
F0

([−h̄,0],Rn), the trivial solution is globally

asymptotically stable in the mean square if

lim
t→∞

E|x(t,φ)|2 = 0. (6)

3 Main results
In this section, we propose a new criterion for synchronization of neural networks with stochastic perturbation

described by (1) and (3).

Now, the following theorem gives our main result.

Theorem 1. For given hd , h̄, and L = diag{l1, l2, ..., ln}, the equilibrium point of (4) is globally asymptotically

stable in the mean square if there exist positive diagonal matrices P,Y,Ti(i = 1,2), and positive definite matrices

Qi(i = 1,2),Ri(i = 1,2,3) satisfying the following LMI:

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 0 0

� Ψ22 Ψ23 Ψ24 0 0 0

� � Ψ33 0 Ψ35 0 0

� � � Ψ44 Ψ45 0 0

� � � � Ψ55 0 0

� � � � � Ψ66 0

� � � � � � Ψ77

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (7)

where

Ψ11 = −PA−AT P+Y +Y T +R1 +R2 +HT
0 PH0 + h̄HT

0 Q2H0 +LT T1L,

Ψ12 = AT PC +HT
0 PH1 + h̄HT

0 Q2H1−Y TC, Ψ13 = PW0, Ψ14 = PW1, Ψ15 =−AT P+Y T ,

Ψ22 = HT
1 PH1− (1−hd)R1 + h̄HT

1 Q2H1 +LT T2L, Ψ23 =−CT PW0, Ψ24 =−CT PW1,

Ψ33 = R3−T1,Ψ35 = W T
0 P, Ψ44 =−(1−hd)R3−T2, Ψ45 = W T

1 P,
Ψ55 = h̄2Q1−2P, Ψ66 =−Q1, Ψ77 =−(1−2hd)R2.

Then, the control gain K of synchronization controller (5) is K = P−1Y .

Proof. System (1) can be represented as

d[e(t)−Ce(t−h(t))] = q(t)dt + z(t)dω(t). (8)
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where

q(t) ≡ −(A−K)e(t)+W0g(e(t))+W1g(e(t−h(t))), z(t)≡ H0e(t)+H1e(t−h(t)). (9)

Let us consider the following Lyapunov-Krasovskii functional candidate:

V (et , t) = [e(t)−Ce(t−h(t))]T P[e(t)−Ce(t−h(t))]+
∫ t

t−h(t)
eT (s)R1e(s)ds

+
∫ t

t−2h(t)
eT (s)R2e(s)ds+

∫ t

t−h(t)
gT (e(s))R3g(e(s))ds

+h̄
∫ 0

−h̄

∫ t

t+θ
qT (s)Q1q(s)dsdθ +

∫ 0

−h̄

∫ t

t+θ
zT (s)Q2z(s)dsdθ (10)

where et = e(t +θ), −2h̄≤ θ ≤ 0.

Then, by Ito’s formula, the stochastic differential dV (et , t) can be obtained as

dV (et , t) = LV (et , t)dt +2[e(t)−Ce(t−h(t))]T P[H0e(t)+H1e(t−h(t))]dω(t) (11)

where

LV (et , t) = 2[e(t)−Ce(t−h(t))]T P[−(A−K)e(t)+W0g(e(t))+W1g(e(t−h(t)))]
+[H0e(t)+H1e(t−h(t))]T P[H0e(t)+H1e(t−h(t))]
+e(t)T R1e(t)− (1− ḣ(t))eT (t−h(t))R1e(t−h(t))
+e(t)T R2e(t)− (1−2ḣ(t))eT (t−2h(t))R2e(t−2h(t))
+g(e(t))T R3g(e(t))− (1− ḣ(t))gT (e(t−h(t)))R3g(e(t−h(t)))

+h̄2qT (t)Q1q(t)− h̄
∫ t

t−h̄
qT (s)Q1q(s)ds+ h̄zT (t)Q2z(t)−

∫ t

t−h̄
zT (s)Q2z(s)ds. (12)

Using Jansen inequality, we have

dV (et , t)≤ Σdt +2[e(t)−Ce(t−h(t))]T P[H0e(t)+H1e(t−h(t))]dω(t) (13)

where

Σ = 2[e(t)−Ce(t−h(t))]T P[−(A−K)e(t)+W0g(e(t))+W1g(e(t−h(t)))]
+[H0e(t)+H1e(t−h(t))]T P[H0e(t)+H1e(t−h(t))]+ e(t)T R1e(t)
−(1−hd)eT (t−h(t))R1e(t−h(t))+ e(t)T R2e(t)− (1−2hd)eT (t−2h(t))R2e(t−2h(t))
+g(e(t))T R3g(e(t))− (1−hd)gT (e(t−h(t)))R3g(e(t−h(t)))+ h̄2qT (t)Q1q(t)

−
(∫ t

t−h(t)
q(s)ds

)T
Q1

(∫ t

t−h(t)
q(s)ds

)
+ h̄zT (t)Q2z(t)−

∫ t

t−h(t)
zT (s)Q2z(s)ds. (14)

From Eq. (9), the following equation holds

2qT (t)P [−q(t)− (A−K)e(t)+W0g(e(t))+W1g(e(t−h(t)))] = 0. (15)

Here note that Eq. (2) means that

g2
j(e j(t))− l2

j e2
j(t)≤ 0 ( j = 1, ...,n), (16)

and

g2
j(e j(t−h(t)))− l2

j e2
j(t−h(t))≤ 0 ( j = 1, ...,n). (17)

From two inequalities (16) and (17) above, for any diagonal positive matrices T1 = diag{t11, ..., t1n} and T2 =
diag{t21, ..., t2n}, the following inequality holds

0 ≤ −
n

∑
j=1

t1 j
[
g2

j(e j(t))− l2
j e2

j(t)
]− n

∑
j=1

t2 j
[
g2

j(e j(t−h(t)))− l2
j e2

j(t−h(t))
]

= eT (t)LT T1Le(t)−gT (e(t))T1g(e(t))
+eT (t−h(t))LT T2Le(t−h(t))−gT (e(t−h(t)))T2g(e(t−h(t))). (18)

For simplicity, let us define ζ (t) as

ζ T (t) =
[
eT (t) eT (t−h(t)) gT (e(t)) gT (e(t−h(t))) qT (t)

(∫ t

t−h(t)
q(s)ds

)T
eT (t−2h(t))

]
. (19)
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and Y = PK.

By utilizing the relationship (14)-(18), we have that

dV (et , t)≤ Σ1dt +2[e(t)−Ce(t−h(t))]T P[H0e(t)+H1e(t−h(t))]dω(t) (20)

where

Σ1 = 2[e(t)−Ce(t−h(t))]T [−(PA−Y )e(t)+PW0g(e(t))+PW1g(e(t−h(t)))]
+[H0e(t)+H1e(t−h(t))]T P[H0e(t)+H1e(t−h(t))]+ e(t)T R1e(t)
−(1−hd)eT (t−h(t))R1e(t−h(t))+ e(t)T R2e(t)− (1−2hd)eT (t−2h(t))R2e(t−2h(t))
+g(e(t))T R3g(e(t))− (1−hd)gT (e(t−h(t)))R3g(e(t−h(t)))+ h̄2qT (t)Q1q(t)

−
(∫ t

t−h(t)
q(s)ds

)T
Q1

(∫ t

t−h(t)
q(s)ds

)
+ h̄zT (t)Q2z(t)−

∫ t

t−h(t)
zT (s)Q2z(s)ds

+2qT (t) [−Pq(t)− (PA−Y )e(t)+PW0g(e(t))+PW1g(e(t−h(t)))]+ eT (t)LT T1Le(t)
−gT (e(t))T1g(e(t))+ eT (t−h(t))LT T2Le(t−h(t))−gT (e(t−h(t)))T2g(e(t−h(t)))

=
[

ζ T (t)Ψζ (t)−
∫ t

t−h(t)
zT (s)Q2z(s)ds

]
≤ ζ T (t)Ψζ (t). (21)

Note that if Ψ < 0, then there exists a positive scalar γ such that

Ψ+diag{γI,0,0,0,0,0,0}< 0. (22)

By taking the mathematical expectation on both side of (20) and considering (22), we have

EV (et , t)
dt

≤ E(ζ T (t)Ψζ (t))≤−γE|e(t)|2, (23)

which implies that the error dynamics (4) between master (1) and response network (3) is globally asymptotically

stable in the mean square. This completes our proof. 

Remark 1. The solutions of Theorem 1 can be obtained by solving the eigenvalue problem with respect to solution

variables, which is a convex optimization problem. In this Paper, we utilize Matlab’s LMI Control Toolbox which

implements the interior-point algorithm. This algorithm is faster than classical convex optimization algorithms.

Example 1. In order to show the feasibility of our criterion, we consider the following stochastic neural networks

with the following system matrices and parameters:

A = diag{2,2}, W0 =
[

1 0.2
0.3 0.8

]
, W1 =

[
0.3 −0.2
−0.2 0.3

]
,

C =
[

0.2 −0.1
0.1 0.1

]
, H0 =

[
0.2 0.2
0.2 0.4

]
, H1 =

[
0.1 0.05

0.05 0.1

]
, L = I, hd = 0.1.

By applying Theorem 1 to the system above and using Matlab’s LMI Toolbox, one can easily find that the LMI

given in Theorem 1 is feasible for any h. For instance, when h̄ = 10, the gain matrix K for controller (5) is as

follows:

K = diag{0.3678,0.3737}.
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