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Abstract. This paper presents a tool to automatically generate the mathematical model of capacitive
MEMS gyroscopes in a symbolic form from geometric input data. The resulting equations can be used
for further analysis and controller design within the computer algebra program Maple [7]. Additionally,
a Level 2 C-Code S-Function code generator provides a link to the well known numeric simulation
environment MATLAB/Simulink [8].

1 Introduction
Since Micro-Electro-Mechanical-Systems (MEMS) are complex devices, the systematic derivation of an appro-
priate mathematical model is a challenging task. In general, MEMS comprise components or sub-systems from
different physical domains like rigid and elastic mechanical structures, capacitors, inductors, optical and fluidic
elements. Therefore, one has to deal with the adequate laws of continuum mechanics, electromagnetism and ther-
modynamics in order to derive a suitable mathematical formulation.
The demands on the mathematical models vary strongly with the intended applications. In order to understand the
basic mode of operation, typically lumped parameter models are used, which in general are insufficient in terms of
accuracy. By means of the Finite Element Method (FEM) on the other hand it is possible to reproduce the dynamic
behavior at a high level of detail, even if the geometry of the device is complex. Therefore, such models are used
in a broad range of applications such as the analysis of elastic mechanical structures (e.g., the calculation of eigen-
frequencies, stress or strain distributions), the determination of thermodynamical interactions, the calculation of
electrostatic and electromagnetic fields, etc. This method, however, has the disadvantage that the resulting system
of differential equations is very large and therefore can neither be used for the controller design nor for transient
simulations within reasonable time. For this reason, considerable research activities have been conducted in the
field of model order reduction techniques, see, e.g., [6], [11], [12] with application to MEMS. Thereby, lower order
systems are derived still representing the essential dynamic behavior of the large scale finite element models with
sufficient accuracy. The drawback of these techniques is that the systematic order reduction of non-linear systems,
which we have to deal with when modeling capacitive actuators and sensors, is still an open issue. An alternative
approach to receive a mathematical description with a reasonable number of state variables is to partition the device
into functional components (e.g., rigid bodies, elastic bodies, lumped capacitors, etc.) before deriving the actual
mathematical representation.
Although there are several commercially available simulation environments (e.g., Ansys[1], COMSOL[2], Co-
ventor[3]) which cope with the mathematical modeling of MEMS, none of these tools is capable of extracting a
symbolic representation of the device under consideration. In view of this shortcoming, a software is presented
in this paper to derive the non-linear mathematical model of capacitive gyroscopes in a symbolic form from the
geometry data available from CAD tools.

2 Mathematical concept
In order to specify the functionality of the software, at first the basic mathematical concepts will be explained by
means of a demonstrative example. Figure 1 shows a single axis capacitive gyroscope [5] which is designed to
measure the externally applied angular rate signal Ω by means of the Coriolis effect. As illustrated in Figure 1 (a),
the device is composed of several individual elements, i.e., the movable mechanical structure consisting of rigid
elements (frame, paddle) and elastic elements (beam structures), and the fixed electrodes (comb electrodes and
parallel plate electrodes). The emerging gaps between the fixed electrodes and the movable structure are forming
capacitors, which in turn can be utilized as capacitive actuators and sensors. A harmonic voltage is applied to the
in-plane capacitive comb actuators, exciting the movable structure to oscillate in the x0-direction as depicted in
Figure 1 (b). If the device is undergoing a rotation about the y0-axis due to an external angular rate signal Ω, the
Coriolis force causes an oscillation of the movable structure in the z0-direction as depicted in Figure 1 (c). This
oscillation is captured by measuring the capacitance change of the capacitive parallel-plate sensor elements.
In a more general form, the capacitive gyroscope can be considered as a multi-body system composed of rigid
bodies and elastic bodies. Figure 2 shows an arbitrary rigid body Rα , an arbitrary elastic body Eβ and an arbitrary
capacitor Cγ to illustrate the following considerations. Let us introduce a spatial reference system (o0x0y0z0) and
material coordinate systems (oα xα yα zα) and (oβ xβ yβ zβ ). A rigid body Rα is characterized by its mass mα , its
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Figure 1: Capacitive gyroscope

inertia tensor Jα and the center of mass Sα . According to [13], a rigid body motion is defined by a combination
of pure translation and pure rotation why it is reasonable to utilize the translatory degrees-of-freedom vα

0 ∈ R3 and
the rotatory degrees-of-freedom φφφ α

0 ∈ R3, which allow for the parametrization of the rotation Rα
0 ∈ SO(3), as the

generalized coordinates. In order to simplify the notation, the translatory degrees-of-freedom vα
0 and the rotatory

degrees-of-freedom φφφ α
0 are merged to a vector of displacements and rotations rα

0 =
[
vα

0 ,φφφ α
0
]T

∈ R6.

Now let Sα
0 and sα

0 (t) denote the position vectors to the center of mass in the undeformed and deformed configu-
ration, respectively. Then the current translation vector of the center of mass reads as vα

0 (t) = sα
0 (t)−Sα

0 . If the
reference system is subject to a rotation about the y0-axis with the angular velocity Ω relative to an inertial system
(oIxIyIzI), the absolute velocity of the center of mass expressed in the reference system is (ṡα

I )0 = ωωω I
0 × sα

0 + ṡα
0

with the angular velocity vector ωωω I
0 = [0,Ω,0]T. In order to calculate the kinetic energy of the rigid body Rα it

is advantageous to express the angular velocity vector in the material coordinate system (ωωωα
I )α = R0

α
(
ωωωα

0 +ωωω I
0
)
,

with the rotation matrix R0
α and the associated angular velocity vector ωωωα

0 , yielding, see, e.g., [13],

Tα =
1
2

mα (ṡα
I )T

0 (ṡα
I )0 +

1
2

(ωωωα
I )T

α Jα (ωωωα
I )α . (1)

Since a rigid body has the property that the displacement of an arbitrary point Xk ∈ Rα can be expressed in the
form uk

0
(
Xk

0, t
)

=
(
Rα

0 (φφφ α
0 )− I

)(
Xk

0 −Sα
0
)
+ vα

0 (t) and φφφ k
0 = φφφ α

0 with the position vector Xk
0 in the undeformed

configuration as depicted in Figure 2, the components of the vector of displacements and rotations rk
0 =

[
uk

0,φφφ
k
0

]T
∈

R6 can be expressed as functions of the generalized coordinates of the associated rigid bodies.

For the further considerations it is assumed that the mass of the elastic bodies is negligible compared to the mass
of the rigid bodies and that the overall displacements of the bodies are small. If an elastic body Eβ is connected to
w rigid bodies Rαi , the above assumptions allow for the calculation of the strain energy in the form

Vβ =
1
2

(
rβ

0

)T
Kβ

0 rβ
0 (2)

with the stiffness matrix Kβ
0 and the vector rβ

0 =
[
uα1β

0 ,φφφ α1β
0 , ...,uαwβ

0 ,φφφ αwβ
0

]T
∈ R6w, merging the displacements

and rotations at the intersection points Xαiβ with the rigid bodies Rαi , i = 1, ..,w. If the elastic body is rigidly
connected to the reference frame at the intersection point X0 then the displacements and rotations are vanishing,
i.e., u0

0 = 000, φφφ 0
0 = 000. Finally, the capacitance Cγ of an electrostatic actuator forming a capacitor Cγ together with

the rigid body Rα is derived as a function of the vector of displacements and rotations rγ
0 =

[
uαγ

0 ,φφφ αγ
0

]T
∈R6 at an

associated point Xαγ on the surface of the rigid body. Then the potential (co-)energy provided by the electrostatic
actuator reads as

Vγ =
1
2

Cγ rγ
0
(
Uγ

)2 (3)

with the applied voltage Uγ .

Now if it is assumed that a rigid body is solely connected to elastic bodies and vice versa and no generalized forces
are acting on the system, Lagrange’s formalism

d
dt

(
∂T
∂ ż

)T
−

(
∂T
∂z

)T
+

(
∂V
∂z

)T
= 000 (4)
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Figure 2: Displacement of bodies

can be applied with the generalized coordinates z =
[
rα1

0 , ...,rαn
0

]T of n rigid bodies, the total kinetic energy T =

∑
α

Tα and the total potential energy V = ∑
β

Vβ −∑
γ

Vγ .

Referring to [13] equation (4) can be written in the form

M(z) z̈+C(Ω,z, ż) ż+ f
(
Ω,Ω̇,z, ūuuγ) = 0 (5)

with the inertia matrix M(z), the matrix C(Ω,z, ż) comprising the centrifugal and Coriolis terms, the vector
f
(
Ω,Ω̇,z, ūuuγ) consisting of all terms that result from the potential energy as well as the centrifugal and inertia

terms that arise from the external rotation of the reference system with the angular rate Ω. The vector ūuuγ consists
of the m applied voltages ūuuγ =

[
Uγ1 , ...,Uγm

]T. The output of the system

y = g(z) (6)

is given by the vector of capacities g =
[
Cγ1 , ...,Cγp

]T of the p sense structures.

3 Software
In the following section the developed software for the automatic generation of the mathematical model of capac-
itive MEMS gyroscopes will be described. Figure 3 illustrates the overall program structure. As it can be seen
from the diagram, the software tool is composed of two parts. The first one, SimMEMS, is implemented in the
object oriented scripting language Python [10] and provides the functionality to extract the necessary information
from the geometry data to represent the device under consideration with the mathematical representation derived in
Section 2. The second part, ModelMEMS, is implemented as a library in the commercial computer algebra system
Maple and provides a symbolic mathematical model of the introduced elements (e.g., rigid bodies R, elastic bodies
E , capacitors C ).

3.1 SimMEMS

The sensor analysis in SimMEMS proceeds in several steps. First, the input file which has to comply with a certain
format, is read. This input file consists of different parts describing the material, the geometry and the topology
of the device. In the current version, the geometry data is limited to cuboid elements but there are no limitations
concerning the number and size of elements defined in the file. As in most cases the geometry data is exported
from CAD tools which do not contain any information about the function of the individual geometry elements,
several topology algorithms have been implemented to derive the detailed composition of the device. The user
only has to provide the information whether a cuboid is part of a rigid or elastic structure or an electrode and the
mentioned algorithms ensure that rigid body elements that intersect with other rigid body elements are merged to
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Figure 3: Program structure

one composite rigid body and elastic beam elements that intersect with other elastic beam elements are merged to
one composite beam structure.

As a result of the first step, the specific functional components of the sensor (i.e., rigid body, beam structure and
electrode) are represented by software classes which will be referred to as functional objects from now on. Based
on these functional objects the analysis is continued yielding a further set of functional objects, i.e., elastic body
and capacitor. Together, these objects represent the mathematical properties of rigid bodies R, elastic bodies E

and capacitors C . To make the following analysis steps comprehensible, all functional objects have a geometrical
representation and can be visualized in an integrated 3D viewer. Additionally, to make the program as flexible as
possible an interactive interpreter and an editor frame have been added such that all objects can can be arbitrarily
changed and scripts for reusable tasks can be developed.

Rigid body
Due to the fact that a rigid body Rα is composed of a set of cuboid elements, its mass mα , the position vector from
the origin of the reference frame to the center of mass Sα

0 in the undeformed configuration and its inertia tensor
Jα with respect to the center of mass can be calculated by means of the well known equations from rigid body
dynamics, see, e.g., [13].

Elastic body
The specification of the strain energy (2) of an elastic body is usually more challenging due to various reasons.
First, the geometry of such elastic elements can be complicated and an approximation by cuboid elements is usually
not sufficiently accurate. Second, as the device is built of the cubic material silicon, the stiffness matrix Kβ

0 of a
cuboid beam element can just be given symbolically for specific directions of the anisotropic material, see [4].
Therefore, in order to gain the maximal flexibility, the definition of an elastic body object Eβ can be achieved
in two ways. The first method is to define it directly in the input file by defining the stiffness matrix Kβ

0 , e.g.,
acquired by means of a finite element analysis and the position vectors Xαiβ

0 in the undeformed configuration of its
connection nodes Xαiβ .
The second option is to derive it from a beam structure object. Although this procedure is limited to cuboid beam
elements, it is applicable for many sensor designs. In the following, it is assumed that the mass of the elastic
beam elements are negligible in comparison to the mass of the rigid bodies and that the overall displacements of
the bodies are small. Figure 4 illustrates an individual elastic beam element B̂i. Referring to [9], an elastic beam
element, approximated by the Bernoulli-Euler theory, can be described by the relation[

p̂s
0

p̂e
0

]
=

[
K̂ss K̂se
K̂es K̂ee

]
︸ ︷︷ ︸

K̂i
0

[
r̂s

0
r̂e

0

]
with K̂es = K̂T

se , (7)
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Figure 4: Individual beam element

with the stiffness matrix K̂i
0, the vectors p̂s

0 =
[
fs
0, t

s
0
]T

∈ R6, p̂e
0 =

[
fe
0, t

e
0
]T

∈ R6 containing the forces fs
0,fe

0 and
torques ts

0,te
0 and the vectors r̂s

0 =
[
us

0,φφφ
s
0
]T

∈R6, r̂e
0 =

[
ue

0,φφφ
e
0
]T

∈R6 consisting of the translational displacements
us

0,u
e
0 and rotations φφφ s

0,φφφ
e
0 at the start X̂s and end node X̂e, all expressed in the spatial reference frame (o0x0y0z0).

If the beam structure object is composed of a single elastic beam element, the potential energy of the resulting
elastic body Eβ can be calculated according to (2), with Kβ

0 = K̂i
0 and rβ

0 =
[
r̂s

0, r̂
e
0
]T. If, however, the beam

structure object is composed of several elastic beam elements, further considerations have to be made. To make this
more comprehensible, the procedure will be explained by means of an illustrative example. Figure 5 (a) illustrates
a T-shaped beam structure with three connection nodes Xαiβ , i ∈ {1,2,3}. The elements B1 and B2 of the beam
structure are replaced by suitable elements B̂1, B̂2 and B̂3, as illustrated in Figure 5 (b), that ensure certain
required kinematic boundary conditions. Relation (7), given for every beam element B̂i, allows for assembling a
single linear mapping ⎡⎢⎢⎢⎢⎢⎢⎣

p̂1
0

p̂2
0

p̂3
0

p̂4
0

p̂5
0

p̂6
0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

K̂11 K̂12 0 0 0 0
K̂21 K̂22 0 0 0 0

0 0 K̂33 K̂34 0 0
0 0 K̂43 K̂44 0 0
0 0 0 0 K̂55 K̂56
0 0 0 0 K̂65 K̂66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
r̂1

0
r̂2

0
r̂3

0
r̂4

0
r̂5

0
r̂6

0

⎤⎥⎥⎥⎥⎥⎥⎦
forming the relation

p̂ = K̂r̂ (8)
of the vector of forces and torques p̂ and the vector of displacements and rotations r̂ at the outer nodes X̂iβ ,
i ∈ {1,4,6} and inner nodes X̂ jβ , j ∈ {2,3,5}. As it can be seen in Figure 5 (b), the inner nodes X̂ jβ , j ∈ {2,3,5}
satisfy the kinematic boundary condition r̂2

0 = r̂3
0 = r̂5

0. As a consequence, the vector of displacements and rotations
r̂ can be expressed by a new vector r̄ =

[
r̂1

0, r̂2
0, r̂4

0, r̂6
0
]T using the singular mapping

r̂ = H̄r̄ (9)

with the transformation matrix

H̄ =

⎡⎢⎢⎢⎢⎢⎣
I 0 0 0
0 I 0 0
0 I 0 0
0 0 I 0
0 I 0 0
0 0 0 I

⎤⎥⎥⎥⎥⎥⎦ . (10)

(a) (b) (c)

Xα1βXα1β
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Figure 5: Beam structure to elastic body
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Inserting equation (9) into relation (8) and multiplying it with the transpose transformation matrix H̄T from the left
hand side yields

H̄Tp̂︸︷︷︸
p̄

= H̄TK̂H̄︸ ︷︷ ︸
K̄

r̄ . (11)

In the resulting vector of forces and torques p̄ one can see that, according to the static boundary conditions, the
sum of forces and torques at the node X̂2β must be zero, yielding

p̄ =

⎡⎢⎢⎣
p̂1

0
p̂2

0 + p̂3
0 + p̂5

0
p̂4

0
p̂6

0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
p̂1

0
0
p̂4

0
p̂6

0

⎤⎥⎥⎦ .

In order to obtain a re-ordered vector of forces and torques p̃, in which the zero-entries of all remaining inner nodes
(in this example just one) appear in the lower entries, the vector p̄ must be multiplied with the permutation matrix

H̃ =

⎡⎢⎣ I 0 0 0
0 0 I 0
0 0 0 I
0 I 0 0

⎤⎥⎦
resulting in

p̃ = H̃p̄ =

[
pβ

0
0

]
with pβ

0 =

⎡⎣ p̂1
0

p̂4
0

p̂6
0

⎤⎦ .

A permutation matrix always satisfies H̃TH̃ = H̃H̃T = I. Substituting p̄ = H̃Tp̃ into (11), multiplying with H̃ and
expanding with H̃TH̃ yields

H̃H̃T︸︷︷︸
I

p̃ = H̃K̄H̃T︸ ︷︷ ︸
K̃

H̃r̄︸︷︷︸
r̃

(12)

with the new vector of displacements and rotations

r̃ =

[
rβ

0
r̂2

0

]
with rβ

0 =

⎡⎣ r̂1
0

r̂4
0

r̂6
0

⎤⎦ .

In order to present the further considerations clearer, (12) is written in the form[
pβ

0
0

]
=

[
K̃ββ K̃β0
K̃0β K̃00

][
rβ

0
r̂2

0

]
.

The vector of displacements and rotations r̂2
0 at the inner node X̂2β can now be expressed by the linear mapping

r̂2
0 = −K̃−1

00 K̃0β rβ
0

of the vector of displacements and rotations rβ
0 at the outer nodes X̂iβ , i ∈ {1,4,6}. Thus, the desired relation

finally reads as
pβ

0 =
(
K̃ββ − K̃β0K̃−1

00 K̃0β
)︸ ︷︷ ︸

Kβ
0

rβ
0 ,

with the stiffness matrix Kβ
0 , permitting the description of the potential energy of an elastic body Eβ according to

(2).

Capacitor
In the last analysis step, the capacitor elements Cγ are derived. As indicated in Section 2, only capacitor elements
emerging between the statically mounted electrodes and the movable rigid bodies are considered. The capacitances
depend on the generalized coordinates and can therefore be used as actuators and sensors. Under the assumption
that the rigid body Rα and electrode are parallel in the undeformed configuration, as a result of the geometric
structure of the elements under consideration, a capacitor Cγ is always composed of one or more rectangular plate
elements Cγi with constant initial gap distance g0 and initial rectangular overlap area A0

αγi , as illustrated in Figure 6.
For the further considerations, let us introduce a coordinate system (oγi xγi yγi zγi), whose origin oγi is located on the
bottom side of the electrode, orientated in such way that zγi is aligned normal to the planar surface of the electrode
and xγi and yγi are in direction of the lateral edges of the overlap area A0

αγi . Then, the displacement of a point Xαγi
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Figure 6: Capacitor in undeformed configuration

within the overlap area Aαγi in the undeformed configuration described in the coordinate system (oγi xγi yγi zγi) reads
as

ûαγi
0 = R0

γi u
αγi
0

with the rotation matrix R0
γi , describing the initial orientation of the static electrode with respect to the reference

coordinate system (o0x0y0z0). Hereafter, it is assumed that the electric field is ideal in the sense that stray fields are
negligible, concluding that it only has one effective component normal to the static electrode. Thus, the capacity
of a Cγi element in the deformed configuration calculates as

Cγi = εr

∫∫
Aαγi

1
gγi

dxγidyγi (13)

with dielectric constant εr, the overlap area Aαγi and the gap distance

gγi = g0 − ûαγi
0 ez,

with the unit vector in zγi-direction ez. The overlap area in the deformed configuration Aαγi is given by the normal
projection of the lateral edges of the static electrode on the surface of the movable electrode an thus depends on the
displacements and rotations rα

0 of the movable electrode Rα . For the devices under consideration, however, the
rotational displacement of a rigid body Rα can be assumed to be small. Furthermore, the size of the overlap area
Aαγi of a single Cγi element is usually small in comparison to the whole overlap area of the capacitor Cγ , justifying
an approximation of the projected area by a rectangle, which only dependends on the translational displacement
vector ûαγi

0 . Therefore, (13) can be approximated by

Cγi
∼= Cγi

(
ûαγi

0
)

= εr

(
lx0
γi ± ûαγi

0 ex
)(

ly0
γi ± ûαγi

0 ey

)
gγi

(14)

with the unit vectors ex and ey in xγi- and yγi -direction, respectively. Equation (14) equals a rectangular parallel
plate capacitor with variable edge and gap length. The capacity of the whole capacitor Cγ finally reads

Cγ ∼= ∑
i

Cγi

(
ûαγi

0
)

. (15)

With these considerations parallel plate sense capacitors and drive comb capacitors can now be easily derived by
calculating the intersection area of all rigid bodies Rα and all electrodes.

3.2 ModelMEMS

The second part of the tool, ModelMEMS, is implemented as a library in the commercial computer algebra system
Maple. Apart from the benefit that control engineers are familiar with computer algebra programs, the provided
worksheet environment is flexible and easily expandable.
The sensor analysis in ModelMEMS proceeds in several steps. Firstly, the data, which is transferred from Sim-
MEMS by a file format based on the eXtensible Mark-up Language (XML[14]), is read. In the next step a math-
ematical object is assigned to each functional object. Henceforth, one can work with these mathematical objects
within the full functional range of Maple. This includes changing the numerical values, assigning new symbols
or adding new mathematical objects to the device, which were not defined in the data file. However, during a
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typical analysis, one usually proceeds by calculating the kinetic (1) and potential energies (2), (3) of the device and
deriving the differential equations (5) of motion by means of the Lagrange Formalism (4).

The resulting equations of motion usually cover a dynamic range that is far beyond the interest of the controller
design. Therefore, a modal transformation is performed allowing the user to just include the relevant dynamics
of the device. To make the selection process easier all eigenmodes of the linearized mathematical model can be
animated in the 3D viewer of SimMEMS.

At this point it is worth mentioning that, since Maple is used as the calculation engine, all calculation steps can
be performed symbolically and/or, if desired, with arbitrary precision arithmetic. This is fundamental to prevent
numerical inaccuracies and to preserve the mathematical symmetries found in these devices. Furthermore, working
with symbolic or semi-symbolic equations, on the one hand, leads to a better understanding of the overall system
behavior and on the other hand, keeps the possibility of choosing those parameters which shall remain symbolic
and which, for the sake of simulation efficiency, shall be numeric.

For the further controller design and simulation of the closed-loop behavior in MATLAB/Simulink, a Level 2
C-Code S-Function simulation model can be generated from the mathematical model by the integrated code gen-
erator.

4 Conclusion
In this paper, a tool to automatically generate the mathematical model of capacitive MEMS gyroscopes in a sym-
bolic form from geometric input data is introduced. After summarizing the advantages and disadvantages of
common design strategies, a mathematical concept is presented that allows for the derivation of the equations of
motion of capacitive MEMS gyroscopes by means of the well known Lagrange formalism. Therefore, the device
under consideration is divided into its functional components (e.g., rigid body, beam structure, electrode). After
illustrating the overall program structure, the objective of the two parts of the software are specified, followed by
the introduction of several implemented algorithms.
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